Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 18;13(7):2094-2104.
doi: 10.1039/d1sc05473b. eCollection 2022 Feb 16.

Combining metal-metal cooperativity, metal-ligand cooperativity and chemical non-innocence in diiron carbonyl complexes

Affiliations

Combining metal-metal cooperativity, metal-ligand cooperativity and chemical non-innocence in diiron carbonyl complexes

Cody B van Beek et al. Chem Sci. .

Abstract

Several metalloenzymes, including [FeFe]-hydrogenase, employ cofactors wherein multiple metal atoms work together with surrounding ligands that mediate heterolytic and concerted proton-electron transfer (CPET) bond activation steps. Herein, we report a new dinucleating PNNP expanded pincer ligand, which can bind two low-valent iron atoms in close proximity to enable metal-metal cooperativity (MMC). In addition, reversible partial dearomatization of the ligand's naphthyridine core enables both heterolytic metal-ligand cooperativity (MLC) and chemical non-innocence through CPET steps. Thermochemical and computational studies show how a change in ligand binding mode can lower the bond dissociation free energy of ligand C(sp3)-H bonds by ∼25 kcal mol-1. H-atom abstraction enabled trapping of an unstable intermediate, which undergoes facile loss of two carbonyl ligands to form an unusual paramagnetic (S = ) complex containing a mixed-valent iron(0)-iron(i) core bound within a partially dearomatized PNNP ligand. Finally, cyclic voltammetry experiments showed that these diiron complexes show catalytic activity for the electrochemical hydrogen evolution reaction. This work presents the first example of a ligand system that enables MMC, heterolytic MLC and chemical non-innocence, thereby providing important insights and opportunities for the development of bimetallic systems that exploit these features to enable new (catalytic) reactivity.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. Different methods of metal–ligand cooperativity in bimetallic complexes.
Scheme 1
Scheme 1. Synthesis of complexes 1 and 2 by reaction of iPrPNNP with Fe2(CO)9.
Scheme 2
Scheme 2. Synthesis of 3 by deprotonation of 1.
Scheme 3
Scheme 3. The photochemical synthesis of complexes 1 and 4.
Fig. 2
Fig. 2. Experimental (black) and simulated (red) X-band EPR spectrum of 4 in toluene at room temperature (A) or in a toluene glass at 30 K (B). (A): microwave freq. 9.650747 GHz, mod. amp. 4.000 G, power 0.6325 mW. Simulation parameters: giso = 2.0475, Gaussian line broadening 1.284 mT. (B): microwave freq. 9.641384 GHz, mod. amp. 4.000 G, power 0.6325 mW. Simulation parameters: g [2.0081, 2.0282, 2.1028], Gaussian line broadening 1.153 mT. (C): the DFT optimized structure of 4 (B3LYP/def2-TZVP) and its spin density plot (isosurface value of 0.02 e Bohr−3).
Scheme 4
Scheme 4. The reduction of complex 4 to complex 5 and its protonation to 6.
Fig. 3
Fig. 3. Displacement ellipsoid plots (50% probability) of the asymmetric units of complex 1, 3, 5 and 6. Most hydrogen atoms and the benzene molecules in 6 are omitted and iPr groups on P and the THF molecules in 3 and 5 are depicted as wireframe for clarity. For 5 and 6 only the major disorder component is shown.
Scheme 5
Scheme 5. Light induced conversion of 7 to 4.
Fig. 4
Fig. 4. Experimental (black) and simulated (red) X-band EPR spectrum of 7 in toluene at room temperature (A) or in a toluene glass at 30 K (B). (A) Microwave freq. 9.649849 GHz, mod. amp. 4.000 G, power 0.6325 mW. Simulation parameters component 1 (7): giso = 2.0418, A31P = 58.279 MHz, Gaussian line broadening 0.68 mT, weight = 99.9%. Simulation parameters component 2 (TBP): giso = 2.005, Gaussian line broadening 0.3 mT, weight = 0.1%. (B) Microwave freq. 9.650852 GHz, mod. amp. 2.000 G, power 0.2000 mW. Simulation parameters: g [2.0027, 2.0478, 2.0684], A31P [40.15, 71.2293, 62.89], g-strain [0, 0, 0.013007], g-frame [−1.21, 2.34, 3.02], A-frame [1.06, 1.02, −1.53]. (C) The structure of 7 and its spin density plot (isosurface value of 0.02 e Bohr−3).
Scheme 6
Scheme 6. Partial thermochemical square scheme of complex 1 to determine the BDFEC–H.
Fig. 5
Fig. 5. Cyclic voltammograms of complex 6 (1 mM) in THF/[Bu4N]PF6 (scan rate = 0.1 V s−1); the arrow indicates the scan direction.
Fig. 6
Fig. 6. Cyclic voltammograms of complex 4 and 6 (1 mM) with the addition 1 mM of phenol in THF/[Bu4N]PF6 (scan rate = 0.1 V s−1); the arrow indicates the scan direction.
Fig. 7
Fig. 7. Cyclic voltammograms of complex 6 (1 mM) with the addition of 1–10 mM of TEA in THF/[Bu4N]PF6 (scan rate = 0.1 V s−1); the arrow indicates the scan direction.

References

    1. Can M. Armstrong F. A. Ragsdale S. W. Chem. Rev. 2014;114:4149–4174. doi: 10.1021/cr400461p. - DOI - PMC - PubMed
    2. Lubitz W. Ogata H. Rüdiger O. Reijerse E. Chem. Rev. 2014;114:4081–4148. doi: 10.1021/cr4005814. - DOI - PubMed
    3. Wodrich M. D. Hu X. Nat. Rev. Chem. 2017;2:0099. doi: 10.1038/s41570-017-0099. - DOI
    4. Sippel D. Rohde M. Netzer J. Trncik C. Gies J. Grunau K. Djurdjevic I. Decamps L. Andrade S. L. A. Einsle O. Science. 2018;359:1484–1489. doi: 10.1126/science.aar2765. - DOI - PubMed
    1. Li Y. Rauchfuss T. B. Chem. Rev. 2016;116:7043–7077. doi: 10.1021/acs.chemrev.5b00669. - DOI - PMC - PubMed
    2. Birrell J. A. Pelmenschikov V. Mishra N. Wang H. Yoda Y. Tamasaku K. Rauchfuss T. B. Cramer S. P. Lubitz W. DeBeer S. J. Am. Chem. Soc. 2020;142:222–232. doi: 10.1021/jacs.9b09745. - DOI - PMC - PubMed
    1. Land H. Senger M. Berggren G. Stripp S. T. ACS Catal. 2020;10:7069–7086. doi: 10.1021/acscatal.0c01614. - DOI
    2. Kleinhaus J. T. Wittkamp F. Yadav S. Siegmund D. Apfel U.-P. Chem. Soc. Rev. 2021;50:1668–1784. doi: 10.1039/D0CS01089H. - DOI - PubMed
    1. Tai H. Hirota S. Stripp S. T. Acc. Chem. Res. 2021;54:232–241. doi: 10.1021/acs.accounts.0c00651. - DOI - PubMed
    1. Duan J. Senger M. Esselborn J. Engelbrecht V. Wittkamp F. Apfel U.-P. Hofmann E. Stripp S. T. Happe T. Winkler M. Nat. Commun. 2018;9:4726. doi: 10.1038/s41467-018-07140-x. - DOI - PMC - PubMed