Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 1;322(5):F553-F572.
doi: 10.1152/ajprenal.00595.2020. Epub 2022 Mar 21.

Blockade of STAT3 signaling alleviates the progression of acute kidney injury to chronic kidney disease through antiapoptosis

Affiliations
Free article

Blockade of STAT3 signaling alleviates the progression of acute kidney injury to chronic kidney disease through antiapoptosis

Jae Yoon Park et al. Am J Physiol Renal Physiol. .
Free article

Erratum in

Abstract

Signal transducer and activator of transcription 3 (STAT3) is a pivotal mediator of IL-6-type cytokine signaling. However, the roles of its full-length and truncated isoforms in acute kidney injury (AKI) and its transition to chronic kidney disease (CKD) remain elusive. Herein, the role of STAT3 isoforms in the AKI-to-CKD transition was characterized using an ischemia-reperfusion injury (IRI) mouse model. The STAT3 inhibitor Stattic was administered to C57BL/6 mice 3 h before IRI. Intrarenal cytokine expression was quantified using real-time PCR and FACS. The effect of Stattic on human tubular epithelial cells cultured under hypoxic conditions was also evaluated. Phosphorylated (p)STAT3 isoforms were detected by Western blot analysis. Stattic treatment attenuated IRI-induced tubular damage and inflammatory cytokine/chemokine expression while decreasing macrophage infiltration and fibrosis in mouse unilateral IRI and unilateral ureteral obstruction models. Similarly, in vitro STAT3 inhibition downregulated fibrosis and apoptosis in 72-h hypoxia-induced human tubular epithelial cells and reduced pSTAT3α-mediated inflammation. Moreover, pSTAT3 expression was increased in human acute tubular necrosis and CKD tissues. STAT3 activation is associated with IRI progression, and STAT3α may be a significant contributor. Hence, STAT3 may affect the AKI-to-CKD transition, suggesting a novel strategy for AKI management with STAT3 inhibitors.NEW & NOTEWORTHY We found that IRI increased expression of STAT3 in murine kidneys, along with inflammation markers. Through the investigation of the role of STAT3 in the AKI-to-CKD transition mechanism using mouse unilateral IRI and unilateral ureteral obstruction models and 24- or 72-h hypoxic induction of primary cultured human tubular epithelial cells, we found that STAT3 could affect the AKI-to-CKD transition. We also observed different degrees of expression in STAT3 isoforms in these processes.

Keywords: STAT3 inhibitor; acute kidney injury; chronic kidney disease; ischemia-reperfusion injury; signal transducer and activator of transcription 3α.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources