"Virtual" attenuation correction: improving stress myocardial perfusion SPECT imaging using deep learning
- PMID: 35312837
- DOI: 10.1007/s00259-022-05735-7
"Virtual" attenuation correction: improving stress myocardial perfusion SPECT imaging using deep learning
Abstract
Purpose: Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is widely used for coronary artery disease (CAD) evaluation. Although attenuation correction is recommended to diminish image artifacts and improve diagnostic accuracy, approximately 3/4ths of clinical MPI worldwide remains non-attenuation-corrected (NAC). In this work, we propose a novel deep learning (DL) algorithm to provide "virtual" DL attenuation-corrected (DLAC) perfusion polar maps solely from NAC data without concurrent computed tomography (CT) imaging or additional scans.
Methods: SPECT MPI studies (N = 11,532) with paired NAC and CTAC images were retrospectively identified. A convolutional neural network-based DL algorithm was developed and trained on half of the population to predict DLAC polar maps from NAC polar maps. Total perfusion deficit (TPD) was evaluated for all polar maps. TPDs from NAC and DLAC polar maps were compared to CTAC TPDs in linear regression analysis. Moreover, receiver-operating characteristic analysis was performed on NAC, CTAC, and DLAC TPDs to predict obstructive CAD as diagnosed from invasive coronary angiography.
Results: DLAC TPDs exhibited significantly improved linear correlation (p < 0.001) with CTAC (R2 = 0.85) compared to NAC vs. CTAC (R2 = 0.68). The diagnostic performance of TPD was also improved with DLAC compared to NAC with an area under the curve (AUC) of 0.827 vs. 0.780 (p = 0.012) with no statistically significant difference between AUC for CTAC and DLAC. At 88% sensitivity, specificity was improved by 18.9% for DLAC and 25.6% for CTAC.
Conclusions: The proposed DL algorithm provided attenuation correction comparable to CTAC without the need for additional scans. Compared to conventional NAC perfusion imaging, DLAC significantly improved diagnostic accuracy.
Keywords: Attenuation correction; Deep learning; MPI; Myocardial perfusion; Quantification; SPECT.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
References
-
- Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol. 2002;9:135–43. - DOI
-
- Ficaro EP, Fessler JA, Shreve PD, Kritzman JN, Rose PA, Corbett JR. Simultaneous transmission/emission myocardial perfusion tomography. Circulation. 1996;93:463–73. - DOI
-
- Huang JY, Huang CK, Yen RF, Wu HY, Tu YK, Cheng MF, et al. Diagnostic performance of attenuation-corrected myocardial perfusion imaging for coronary artery disease a systematic review and meta-analysis. J Nucl Med Society of Nuclear Medicine Inc. 2016;57:1893–8.
-
- Hirschfeld CB, Mercuri M, Pascual TNB, Karthikeyan G, Vitola J V, Mahmarian JJ, et al. Worldwide variation in the use of nuclear cardiology camera technology, reconstruction software, and imaging protocols. JACC Cardiovasc Imaging (2021)
-
- Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng Annual Reviews. 2017;19:221–48. - DOI
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous