Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2022 Mar 21;23(1):65.
doi: 10.1186/s12931-022-01994-y.

One-year pulmonary impairment after severe COVID-19: a prospective, multicenter follow-up study

Affiliations
Observational Study

One-year pulmonary impairment after severe COVID-19: a prospective, multicenter follow-up study

Paola Faverio et al. Respir Res. .

Abstract

Background: Long-term pulmonary sequelae following hospitalization for SARS-CoV-2 pneumonia is largely unclear. The aim of this study was to identify and characterise pulmonary sequelae caused by SARS-CoV-2 pneumonia at 12-month from discharge.

Methods: In this multicentre, prospective, observational study, patients hospitalised for SARS-CoV-2 pneumonia and without prior diagnosis of structural lung diseases were stratified by maximum ventilatory support ("oxygen only", "continuous positive airway pressure (CPAP)" and "invasive mechanical ventilation (IMV)") and followed up at 12 months from discharge. Pulmonary function tests and diffusion capacity for carbon monoxide (DLCO), 6 min walking test, high resolution CT (HRCT) scan, and modified Medical Research Council (mMRC) dyspnea scale were collected.

Results: Out of 287 patients hospitalized with SARS-CoV-2 pneumonia and followed up at 1 year, DLCO impairment, mainly of mild entity and improved with respect to the 6-month follow-up, was observed more frequently in the "oxygen only" and "IMV" group (53% and 49% of patients, respectively), compared to 29% in the "CPAP" group. Abnormalities at chest HRCT were found in 46%, 65% and 80% of cases in the "oxygen only", "CPAP" and "IMV" group, respectively. Non-fibrotic interstitial lung abnormalities, in particular reticulations and ground-glass attenuation, were the main finding, while honeycombing was found only in 1% of cases. Older patients and those requiring IMV were at higher risk of developing radiological pulmonary sequelae. Dyspnea evaluated through mMRC scale was reported by 35% of patients with no differences between groups, compared to 29% at 6-month follow-up.

Conclusion: DLCO alteration and non-fibrotic interstitial lung abnormalities are common after 1 year from hospitalization due to SARS-CoV-2 pneumonia, particularly in older patients requiring higher ventilatory support. Studies with longer follow-ups are needed.

Keywords: COVID-19; High resolution computed tomography (HRCT); Pneumonia; Pulmonary fibrosis; Pulmonary function test.

PubMed Disclaimer

Conflict of interest statement

The authors have no conflicts of interest to declare.

Figures

Fig. 1
Fig. 1
Study flow-chart. CPAP continuous positive airway pressure, IMV invasive mechanical ventilation
Fig. 2
Fig. 2
Comparison of the main pulmonary function tests between 6- and 12-month follow-up visit. FEV1 forced expiratory volume in the 1st second, FVC forced vital capacity, TLC total lung capacity, DLCO diffusion capacity for carbon monoxide, CPAP continuous positive airway pressure, IMV invasive mechanical ventilation
Fig. 3
Fig. 3
Comparison of mMRC dyspnea scale (grade 0 to 4 in the Figure Panel) between 6- and 12-month follow-up visit (n = 258 patients with no missing in mMRC at any follow-up visit). mMRC modified Medical Research Council, CPAP continuous positive airway pressure, IMV invasive mechanical ventilation
Fig. 4
Fig. 4
Summary of the main radiological abnormalities and their extension according to the lung lobe involved. LUL left upper lobe, LLL left lower lobe, RUL right upper lobe, RLL right lower lobe, RML right middle lobe

Similar articles

Cited by

References

    1. Guan WJ, Ni ZY, Hu Y, Liang WH, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032. - DOI - PMC - PubMed
    1. Tian S, Hu W, Niu L, et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020;15(5):700–704. doi: 10.1016/j.jtho.2020.02.010. - DOI - PMC - PubMed
    1. Cabrera-Benitez NE, Laffey JG, Parotto M, et al. Mechanical ventilation–associated lung fibrosis in acute respiratory distress syndrome a significant contributor to poor outcome. Anesthesiology. 2014;121(1):189–198. doi: 10.1097/ALN.0000000000000264. - DOI - PMC - PubMed
    1. Faverio P, Luppi F, Rebora P, et al. Six-month pulmonary impairment after severe COVID-19: a prospective, multicenter follow-up study. Respiration. 2021 doi: 10.1159/000518141. - DOI - PMC - PubMed
    1. Anastasio F, Barbuto S, Scarnecchia E, et al. Medium-term impact of COVID-19 on pulmonary function, functional capacity and quality of life. Eur Respir J. 2021 doi: 10.1183/13993003.04015-2020. - DOI - PMC - PubMed

Publication types