Phytotoxicity Optimization of Fungal Metabolites Produced by Solid and Submerged Fermentation and its Ecotoxicological Effects
- PMID: 35316475
- DOI: 10.1007/s12010-022-03884-x
Phytotoxicity Optimization of Fungal Metabolites Produced by Solid and Submerged Fermentation and its Ecotoxicological Effects
Abstract
Research and commercial production of bioherbicides occur to a lesser extent compared to bioinsecticides and biofungicides. In order to contribute to developing new bioherbicides with low environmental impact, this study aimed to increase the phytotoxicity of metabolites of the fungus Mycoleptodiscus indicus UFSM 54 by optimizing solid and submerged fermentation and evaluate the ecotoxicological effects on earthworms (Eisenia andrei). The Plackett-Burman and central composite rotatable designs were used to optimize metabolite phytotoxicity. The variables optimized in the fermentation were temperature, agitation, pH, water volume in the culture medium, glucose concentration, and yeast extract. The fungus was grown on sugarcane bagasse substrate, and its metabolites were applied to detached Cucumis sativus, Conyza sp., and Sorghum bicolor leaves and used in an avoidance test and acute exposure to earthworms. Metabolite phytotoxicity in submerged fermentation was optimized at 35 °C, 50 rpm, and 1.5 g l-1 of glucose and in solid fermentation at 30-37 °C and in 14-32 ml of water. The metabolites severely damaged germination, initial growth, and leaves of the three plants, and at the doses tested (maximum of 113.92 ml kg-1), the metabolites of M. indicus UFSM 54 were not toxic to earthworms.
Keywords: Bioproducts; Ecotoxicology; Phytotoxic effect; Secondary metabolites.
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Similar articles
-
Fungus-based bioherbicides on circular economy.Bioprocess Biosyst Eng. 2023 Dec;46(12):1729-1754. doi: 10.1007/s00449-023-02926-w. Epub 2023 Sep 25. Bioprocess Biosyst Eng. 2023. PMID: 37743409 Review.
-
Microbial Bioherbicides Based on Cell-Free Phytotoxic Metabolites: Analysis and Perspectives on Their Application in Weed Control as an Innovative Sustainable Solution.Plants (Basel). 2024 Jul 22;13(14):1996. doi: 10.3390/plants13141996. Plants (Basel). 2024. PMID: 39065523 Free PMC article. Review.
-
First report on the production of phytotoxic metabolites by Mycoleptodiscus indicus under optimized conditions of submerged fermentation.Environ Technol. 2022 Apr;43(10):1458-1470. doi: 10.1080/09593330.2020.1836030. Epub 2020 Oct 22. Environ Technol. 2022. PMID: 33044125
-
Production of bioherbicide by Phoma sp. in a stirred-tank bioreactor.3 Biotech. 2016 Dec;6(2):230. doi: 10.1007/s13205-016-0557-9. Epub 2016 Oct 27. 3 Biotech. 2016. PMID: 28330302 Free PMC article.
-
Optimization of submerged fermentation conditions for lovastatin production by the culinary-medicinal oyster mushroom, Pleurotus ostreatus (Higher Basidiomycetes).Int J Med Mushrooms. 2013;15(5):487-95. doi: 10.1615/intjmedmushr.v15.i5.60. Int J Med Mushrooms. 2013. PMID: 24266373
Cited by
-
Fungus-based bioherbicides on circular economy.Bioprocess Biosyst Eng. 2023 Dec;46(12):1729-1754. doi: 10.1007/s00449-023-02926-w. Epub 2023 Sep 25. Bioprocess Biosyst Eng. 2023. PMID: 37743409 Review.
-
Microbial Bioherbicides Based on Cell-Free Phytotoxic Metabolites: Analysis and Perspectives on Their Application in Weed Control as an Innovative Sustainable Solution.Plants (Basel). 2024 Jul 22;13(14):1996. doi: 10.3390/plants13141996. Plants (Basel). 2024. PMID: 39065523 Free PMC article. Review.
-
Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes.Plants (Basel). 2023 Jul 19;12(14):2688. doi: 10.3390/plants12142688. Plants (Basel). 2023. PMID: 37514302 Free PMC article. Review.
References
-
- Andrighetti, M. S., Nachtigall, G. R., Nascimento de Queiroz, S. C., Ferracini, V. L., & Ayub, M. A. Z. (2014). Biodegradation of glyphosate by microbiota of soils of apple tree fields. Rev. Bras. Cienc. Solo, 38, 1643–1653. https://doi.org/10.1590/S0100-06832014000500029 - DOI
-
- Leoci, R., Ruberti, M. (2020) Glyphosate in Agriculture: Environmental Persistence and Effects on Animals. J Agric. Environ. Int. Dev. 114:99–122. https://doi.org/10.12895/jaeid.20201.1167
-
- Maggi, F., Cecilia, D., Tang, F. H. M., & McBratney, A. (2020). The global environmental hazard of glyphosate use. Science of the Total Environment, 717, 137167. https://doi.org/10.1016/j.scitotenv.2020.137167 - DOI - PubMed
-
- Vera, M. S., Fiori, E. D., Lagomarsino, L., Sinistro, R., Escaray, R., Iummato, M. M., Juárez, A., Molina, M. C. R., Tell, G., & Pizarro, H. (2012). Direct and indirect effects of the glyphosate formulation Glifosato Atanor® on freshwater microbial communities. Ecotoxicology, 21, 1805–1816. https://doi.org/10.1007/s10646-012-0915-2 - DOI - PubMed
-
- Santos, F. M., Vargas, L., Christoffoleti, P. J., Agostinetto, D., Mariani, F., & Dal Magro, T. (2014). Differential susceptibility of biotypes of Conyza sumatrensis to chlorimuron-ethyl herbicide. Planta Daninha, 32, 427–435. https://doi.org/10.1590/S0100-83582014000200021 - DOI
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources