From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology
- PMID: 35317021
- PMCID: PMC8932094
- DOI: 10.1007/s13164-021-00604-y
From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology
Abstract
This paper presents a version of neurophenomenology based on generative modelling techniques developed in computational neuroscience and biology. Our approach can be described as computational phenomenology because it applies methods originally developed in computational modelling to provide a formal model of the descriptions of lived experience in the phenomenological tradition of philosophy (e.g., the work of Edmund Husserl, Maurice Merleau-Ponty, etc.). The first section presents a brief review of the overall project to naturalize phenomenology. The second section presents and evaluates philosophical objections to that project and situates our version of computational phenomenology with respect to these projects. The third section reviews the generative modelling framework. The final section presents our approach in detail. We conclude by discussing how our approach differs from previous attempts to use generative modelling to help understand consciousness. In summary, we describe a version of computational phenomenology which uses generative modelling to construct a computational model of the inferential or interpretive processes that best explain this or that kind of lived experience.
© The Author(s) 2022.
Figures

Similar articles
-
Overcoming parallelism: Naturalizing phenomenology with goldstein and Merleau-Ponty.Prog Biophys Mol Biol. 2015 Dec;119(3):502-9. doi: 10.1016/j.pbiomolbio.2015.07.003. Epub 2015 Jul 16. Prog Biophys Mol Biol. 2015. PMID: 26188243 Review.
-
Naturalizing phenomenology - A philosophical imperative.Prog Biophys Mol Biol. 2015 Dec;119(3):661-9. doi: 10.1016/j.pbiomolbio.2015.08.005. Epub 2015 Aug 10. Prog Biophys Mol Biol. 2015. PMID: 26272798 Review.
-
Phenomenological Mapping: A Method For Understanding Pre-Reflective Consciousness.Integr Psychol Behav Sci. 2024 Dec 28;59(1):6. doi: 10.1007/s12124-024-09874-4. Integr Psychol Behav Sci. 2024. PMID: 39730924
-
"Phenomenology" and qualitative research methods.Seiroka Kango Daigaku Kiyo. 1994;20:22-34. Seiroka Kango Daigaku Kiyo. 1994. PMID: 8038622 Review.
-
Phenomenology as research method or substantive metaphysics? An overview of phenomenology's uses in nursing.Nurs Philos. 2010 Oct;11(4):286-96. doi: 10.1111/j.1466-769X.2010.00458.x. Nurs Philos. 2010. PMID: 20840140 Review.
Cited by
-
Towards a computational phenomenology of mental action: modelling meta-awareness and attentional control with deep parametric active inference.Neurosci Conscious. 2021 Aug 27;2021(2):niab018. doi: 10.1093/nc/niab018. eCollection 2021. Neurosci Conscious. 2021. PMID: 34457352 Free PMC article.
-
Modelling phenomenological differences in aetiologically distinct visual hallucinations using deep neural networks.Front Hum Neurosci. 2024 Jan 3;17:1159821. doi: 10.3389/fnhum.2023.1159821. eCollection 2023. Front Hum Neurosci. 2024. PMID: 38234594 Free PMC article.
-
Brain-heart interactions in the neurobiology of consciousness.Curr Res Neurobiol. 2022 Aug 6;3:100050. doi: 10.1016/j.crneur.2022.100050. eCollection 2022. Curr Res Neurobiol. 2022. PMID: 36685762 Free PMC article. Review.
-
Grievance-fueled violence can be better understood using an enactive approach.Front Psychol. 2022 Oct 19;13:997121. doi: 10.3389/fpsyg.2022.997121. eCollection 2022. Front Psychol. 2022. PMID: 36337524 Free PMC article. Review.
-
Hybrid predictive coding: Inferring, fast and slow.PLoS Comput Biol. 2023 Aug 2;19(8):e1011280. doi: 10.1371/journal.pcbi.1011280. eCollection 2023 Aug. PLoS Comput Biol. 2023. PMID: 37531366 Free PMC article.
References
-
- Andrews M. The math is not the territory: Navigating the free energy principle. Biology & Philosophy. 2021;36(3):1–19. doi: 10.1007/s10539-021-09807-0. - DOI
-
- Ashburner, J., K. J. Friston, and W. D. Penny. 2003. “Dynamical causal modeling.” Human brain function.
-
- Ayala F, Dobzhansky T. Studies in the philosophy of biology: Reduction and related problems. Berkeley and Los Angeles: University of California Press; 1974.
Grants and funding
LinkOut - more resources
Full Text Sources