GABAB receptors constrain glutamate presynaptic release and postsynaptic actions in substantia gelatinosa of rat spinal cord
- PMID: 35318502
- DOI: 10.1007/s00429-022-02481-2
GABAB receptors constrain glutamate presynaptic release and postsynaptic actions in substantia gelatinosa of rat spinal cord
Abstract
The substantia gelatinosa (SG, lamina II of spinal cord gray matter) is pivotal for modulating nociceptive information from the peripheral to the central nervous system. γ-Aminobutyric acid type B receptors (GABABRs), the metabotropic GABA receptor subtype, are widely expressed in pre- and postsynaptic structures of the SG. Activation of GABABRs by exogenous agonists induces both pre- and postsynaptic inhibition. However, the actions of endogenous GABA via presynaptic GABABRs on glutamatergic synapses, and the postsynaptic GABABRs interaction with glutamate, remain elusive. In the present study, first, using in vitro whole-cell recordings and taking minimal stimulation strategies, we found that in rat spinal cord glutamatergic synapses, blockade of presynaptic GABABRs switched "silent" synapses into active ones and increased the probability of glutamate release onto SG neurons; increasing ambient GABA concentration mimicked GABABRs activation on glutamatergic terminals. Next, using holographic photostimulation to uncage glutamate on postsynaptic SG neurons, we found that postsynaptic GABABRs modified glutamate-induced postsynaptic potentials. Taken together, our data identify that endogenous GABA heterosynaptically constrains glutamate release via persistently activating presynaptic GABABRs; and postsynaptically, GABABRs modulate glutamate responses. The results give new clues for endogenous GABA in modulating the nociception circuit of the spinal dorsal horn and shed fresh light on the postsynaptic interaction of glutamate and GABA.
Keywords: GABAB receptors; Holographic photostimulation; Minimal stimulation; Spinal cord.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Similar articles
-
GABAB receptors-mediated tonic inhibition of glutamate release from Aβ fibers in rat laminae III/IV of the spinal cord dorsal horn.Mol Pain. 2017 Jan-Dec;13:1744806917710041. doi: 10.1177/1744806917710041. Mol Pain. 2017. PMID: 28565998 Free PMC article.
-
Group II and group III metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn.Neuroscience. 2000;100(2):393-406. doi: 10.1016/s0306-4522(00)00269-4. Neuroscience. 2000. PMID: 11008177
-
Role of presynaptic muscarinic and GABA(B) receptors in spinal glutamate release and cholinergic analgesia in rats.J Physiol. 2002 Sep 15;543(Pt 3):807-18. doi: 10.1113/jphysiol.2002.020644. J Physiol. 2002. PMID: 12231640 Free PMC article.
-
Modulation of sensory input to the spinal cord by presynaptic ionotropic glutamate receptors.Arch Ital Biol. 2005 May;143(2):103-12. Arch Ital Biol. 2005. PMID: 16106991 Review.
-
Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn.Ann N Y Acad Sci. 2013 Mar;1279:90-6. doi: 10.1111/nyas.12056. Ann N Y Acad Sci. 2013. PMID: 23531006 Free PMC article. Review.
Cited by
-
Upregulation of NR2B Subunits of NMDA Receptors in the Lateral Parabrachial Nucleus Contributes to Chronic Pancreatitis Pain.CNS Neurosci Ther. 2025 Mar;31(3):e70313. doi: 10.1111/cns.70313. CNS Neurosci Ther. 2025. PMID: 40022510 Free PMC article.
-
Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night.CNS Neurosci Ther. 2024 Mar;30(3):e14521. doi: 10.1111/cns.14521. CNS Neurosci Ther. 2024. PMID: 38491789 Free PMC article. Review.
References
-
- Ataka T, Kumamoto E, Shimoji K, Yoshimura M (2000) Baclofen inhibits more effectively C-afferent than Aδ-afferent glutamatergic transmission in substantia gelatinosa neurons of adult rat spinal cord slices. Pain 86:273–282. https://doi.org/10.1016/S0304-3959(00)00255-4 - DOI - PubMed
-
- Bardoni R, Takazawa T, Tong CK, Choudhury P, Scherrer G, MacDermott AB (2013) Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn. Ann N Y Acad Sci 1279:90–96. https://doi.org/10.1111/nyas.12056 - DOI - PubMed - PMC
-
- Bettler B, Fakler B (2017) Ionotropic AMPA-type glutamate and metabotropic GABAB receptors: determining cellular physiology by proteomes. Curr Opin Neurobiol 45:16–23. https://doi.org/10.1016/j.conb.2017.02.011 - DOI - PubMed
-
- Bonalume V, Caffino L, Castelnovo LF, Faroni A, Liu S, Hu J, Milanese M, Bonanno G, Sohns K, Hoffmann T, De Col R, Schmelz M, Fumagalli F, Magnaghi V, Carr R (2021) Axonal GABAA stabilizes excitability in unmyelinated sensory axons secondary to NKCC1 activity. J Physiol (lond) 599:4065–4084. https://doi.org/10.1113/JP279664 - DOI
-
- Bowery NG, Smart TG (2006) GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol 147:S109-119. https://doi.org/10.1038/sj.bjp.0706443 - DOI - PubMed - PMC
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources