Quercetin Reduces the Virulence of S. aureus by Targeting ClpP to Protect Mice from MRSA-Induced Lethal Pneumonia
- PMID: 35319277
- PMCID: PMC9045277
- DOI: 10.1128/spectrum.02340-21
Quercetin Reduces the Virulence of S. aureus by Targeting ClpP to Protect Mice from MRSA-Induced Lethal Pneumonia
Abstract
The dramatic increase of methicillin-resistant Staphylococcus aureus (MRSA) poses a great challenge to the treatment of Staphylococcus aureus (S. aureus) infections. Therefore, there is an urgent need to identify novel anti-infective agents to attack new targets to overcome antibiotic resistance. Casein hydrolase P (ClpP) is a key virulence factor in S. aureus to maintain cellular homeostasis. We screened from flavonoids and finally determined that quercetin could effectively attenuate the virulence of MRSA. The results of the thermal shift assay showed that quercetin could bind to ClpP and reduce the thermal stability of ClpP, and the KD value between quercetin and ClpP was 197 nM as determined by localized surface plasmon resonance. We found that quercetin exhibited a protective role of a mouse model of MRSA-induced lethal infection in a murine model. Based on the above facts, quercetin, as a ClpP inhibitor, could be further developed as a potential candidate for antivirulence agents to combat S. aureus infections. IMPORTANCE The resistance of Staphylococcus aureus (S. aureus) to various antibiotics has increased dramatically, and thus the development of new anti-infective drugs with new targets is urgently needed to combat resistance. Caseinolytic peptidase P (ClpP) is a casein hydrolase that has been shown to regulate a variety of important virulence factors in S. aureus. Here, we found that quercetin, a small-molecule compound from traditional Chinese herbal flavonoids, effectively inhibits ClpP activity. Quercetin attenuates the expression of multiple virulence factors in S. aureus and effectively protects mice from lethal pneumonia caused by MRSA. In conclusion, we determined that quercetin is a ClpP inhibitor and an effective lead compound for the development of a virulence factor-based treatment for S. aureus infection.
Keywords: MRSA; antivirulence; caseinolytic peptidase P; inhibitor; pneumonia.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O. 2013. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098. doi: 10.1016/S1473-3099(13)70318-9. - DOI - PubMed
-
- Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Morisaki JH, Kim J, Park S, Darwish M, Lee BC, Hernandez H, Loyet KM, Lupardus P, Fong R, Yan D, Chalouni C, Luis E, Khalfin Y, Plise E, Cheong J, Lyssikatos JP, Strandh M, Koefoed K, Andersen PS, Flygare JA, Wah Tan M, Brown EJ, Mariathasan S. 2015. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527:323–328. doi: 10.1038/nature16057. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
