Development of Neutralization Breadth against Diverse HIV-1 by Increasing Ab-Ag Interface on V2
- PMID: 35319830
- PMCID: PMC9130890
- DOI: 10.1002/advs.202200063
Development of Neutralization Breadth against Diverse HIV-1 by Increasing Ab-Ag Interface on V2
Abstract
Understanding maturation pathways of broadly neutralizing antibodies (bnAbs) against HIV-1 can be highly informative for HIV-1 vaccine development. A lineage of J038 bnAbs is now obtained from a long-term SHIV-infected macaque. J038 neutralizes 54% of global circulating HIV-1 strains. Its binding induces a unique "up" conformation for one of the V2 loops in the trimeric envelope glycoprotein and is heavily dependent on glycan, which provides nearly half of the binding surface. Their unmutated common ancestor neutralizes the autologous virus. Continuous maturation enhances neutralization potency and breadth of J038 lineage antibodies via expanding antibody-Env contact areas surrounding the core region contacted by germline-encoded residues. Developmental details and recognition features of J038 lineage antibodies revealed here provide a new pathway for elicitation and maturation of V2-targeting bnAbs.
Keywords: antibody evolution; broadly neutralizing antibodies; humoral immunity; nonhuman primates; simian/human immunodeficiency virus; virus variation.
© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






Similar articles
-
A Bispecific Antibody That Simultaneously Recognizes the V2- and V3-Glycan Epitopes of the HIV-1 Envelope Glycoprotein Is Broader and More Potent than Its Parental Antibodies.mBio. 2020 Jan 14;11(1):e03080-19. doi: 10.1128/mBio.03080-19. mBio. 2020. PMID: 31937648 Free PMC article.
-
A Germline-Targeting Chimpanzee SIV Envelope Glycoprotein Elicits a New Class of V2-Apex Directed Cross-Neutralizing Antibodies.mBio. 2023 Feb 28;14(1):e0337022. doi: 10.1128/mbio.03370-22. Epub 2023 Jan 11. mBio. 2023. PMID: 36629414 Free PMC article.
-
A Rare Mutation in an Infant-Derived HIV-1 Envelope Glycoprotein Alters Interprotomer Stability and Susceptibility to Broadly Neutralizing Antibodies Targeting the Trimer Apex.J Virol. 2020 Sep 15;94(19):e00814-20. doi: 10.1128/JVI.00814-20. Print 2020 Sep 15. J Virol. 2020. PMID: 32669335 Free PMC article.
-
Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies.Curr Opin HIV AIDS. 2020 Sep;15(5):267-274. doi: 10.1097/COH.0000000000000639. Curr Opin HIV AIDS. 2020. PMID: 32675574 Free PMC article. Review.
-
Strategies for induction of HIV-1 envelope-reactive broadly neutralizing antibodies.J Int AIDS Soc. 2021 Nov;24 Suppl 7(Suppl 7):e25831. doi: 10.1002/jia2.25831. J Int AIDS Soc. 2021. PMID: 34806332 Free PMC article. Review.
Cited by
-
Recapitulation of HIV-1 Neutralization Breadth in Plasma by the Combination of Two Broadly Neutralizing Antibodies from Different Lineages in the Same SHIV-Infected Rhesus Macaque.Int J Mol Sci. 2024 Jun 29;25(13):7200. doi: 10.3390/ijms25137200. Int J Mol Sci. 2024. PMID: 39000308 Free PMC article.
-
Enhancement of Neutralization Responses through Sequential Immunization of Stable Env Trimers Based on Consensus Sequences from Select Time Points by Mimicking Natural Infection.Int J Mol Sci. 2023 Aug 10;24(16):12642. doi: 10.3390/ijms241612642. Int J Mol Sci. 2023. PMID: 37628824 Free PMC article.
-
The V2 domain of HIV gp120 mimics an interaction between CD4 and integrin ⍺4β7.PLoS Pathog. 2023 Dec 8;19(12):e1011860. doi: 10.1371/journal.ppat.1011860. eCollection 2023 Dec. PLoS Pathog. 2023. PMID: 38064524 Free PMC article.
-
Liposomal Nanoparticle Delivery of Ginkgo Flavone Glycosides Enhances SIRT1 Activation and Improves Diabetic Cardiomyopathy.Int J Nanomedicine. 2025 Jun 9;20:7295-7321. doi: 10.2147/IJN.S493862. eCollection 2025. Int J Nanomedicine. 2025. PMID: 40520056 Free PMC article.
References
-
- UNAIDS , UNAIDS Fact‐sheet 2020. https://www.unaids.org/en/resources/fact-sheet (accessed: September, 2021).
-
- Rerks‐Ngarm S., Pitisuttithum P., Nitayaphan S., Kaewkungwal J., Chiu J., Paris R., Premsri N., Namwat C., de Souza M., Adams E., Benenson M., Gurunathan S., Tartaglia J., McNeil J. G., Francis D. P., Stablein D., Birx D. L., Chunsuttiwat S., Khamboonruang C., Thongcharoen P., Robb M. L., Michael N. L., Kunasol P., Kim J. H., Investigators M.‐T., N. Engl. J. Med. 2009, 361, 2209. - PubMed
-
- Gray G. E., Bekker L. G., Laher F., Malahleha M., Allen M., Moodie Z., Grunenberg N., Huang Y., Grove D., Prigmore B., Kee J. J., Benkeser D., Hural J., Innes C., Lazarus E., Meintjes G., Naicker N., Kalonji D., Nchabeleng M., Sebe M., Singh N., Kotze P., Kassim S., Dubula T., Naicker V., Brumskine W., Ncayiya C. N., Ward A. M., Garrett N., Kistnasami G., et al., N. Engl. J. Med. 2021, 384, 1089. - PubMed
-
- Malim M. H., Emerman M., Cell 2001, 104, 469. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- 2021YFC2301500/National Key Research and Development Program of China
- National Institute of Allergy and Infectious Diseases
- 82002138/National Natural Science Foundation of China
- 31970888/National Natural Science Foundation of China
- 2017TD-05/Program for JLU Science and Technology Innovative Research Team
- P01 AI131251/AI/NIAID NIH HHS/United States
- 2018ZX10731101-002-003/Key Projects in the National Science & Technology Pillar Program in the Thirteenth Five-year Plan Period
- 2018ZX10731101-001-010/Key Projects in the National Science & Technology Pillar Program in the Thirteenth Five-year Plan Period
- HSSN261200800001E/National Cancer Institute's National Cryo-EM Facility at the Frederick National Laboratory for Cancer Research
- Intramural Research Program of the Vaccine Research Center
LinkOut - more resources
Full Text Sources
Medical