A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration
- PMID: 35319981
- PMCID: PMC8942365
- DOI: 10.1126/sciadv.abj9949
A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration
Abstract
Currently, there is no pharmacological treatment targeting defective tissue repair in chronic disease. Here, we used a transcriptomics-guided drug target discovery strategy using gene signatures of smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke, identifying druggable targets expressed in alveolar epithelial progenitors, of which we screened the function in lung organoids. We found several drug targets with regenerative potential, of which EP and IP prostanoid receptor ligands had the most profound therapeutic potential in restoring cigarette smoke-induced defects in alveolar epithelial progenitors in vitro and in vivo. Mechanistically, we found, using single-cell RNA sequencing analysis, that circadian clock and cell cycle/apoptosis signaling pathways were differentially expressed in alveolar epithelial progenitor cells in patients with COPD and in a relevant model of COPD, which was prevented by prostaglandin E2 or prostacyclin mimetics. We conclude that specific targeting of EP and IP receptors offers therapeutic potential for injury to repair in COPD.
Figures






Similar articles
-
Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin-driven Alveolar Lung Repair in Chronic Obstructive Pulmonary Disease.Am J Respir Crit Care Med. 2017 Jul 15;196(2):172-185. doi: 10.1164/rccm.201605-0904OC. Am J Respir Crit Care Med. 2017. PMID: 28245136
-
Cigarette smoke activates the proto-oncogene c-src to promote airway inflammation and lung tissue destruction.Am J Respir Cell Mol Biol. 2014 Mar;50(3):559-70. doi: 10.1165/rcmb.2013-0258OC. Am J Respir Cell Mol Biol. 2014. PMID: 24111605 Free PMC article.
-
Cigarette smoke promotes chronic obstructive pulmonary disease (COPD) through the miR-130a/Wnt1 axis.Toxicol In Vitro. 2020 Jun;65:104770. doi: 10.1016/j.tiv.2020.104770. Epub 2020 Jan 11. Toxicol In Vitro. 2020. PMID: 31935487
-
Rationale and emerging approaches for targeting lung repair and regeneration in the treatment of chronic obstructive pulmonary disease.Proc Am Thorac Soc. 2011 Aug;8(4):368-75. doi: 10.1513/pats.201102-019RM. Proc Am Thorac Soc. 2011. PMID: 21816994 Review.
-
DNA repair as an emerging target for COPD-lung cancer overlap.Respir Investig. 2019 Mar;57(2):111-121. doi: 10.1016/j.resinv.2018.11.005. Epub 2019 Jan 7. Respir Investig. 2019. PMID: 30630751 Review.
Cited by
-
Integrated-omics analysis with explainable deep networks on pathobiology of infant bronchiolitis.NPJ Syst Biol Appl. 2024 Aug 22;10(1):93. doi: 10.1038/s41540-024-00420-x. NPJ Syst Biol Appl. 2024. PMID: 39174575 Free PMC article.
-
Illuminating the lung regenerative potential of prostanoids.Sci Adv. 2022 Mar 25;8(12):eabp8322. doi: 10.1126/sciadv.abp8322. Epub 2022 Mar 23. Sci Adv. 2022. PMID: 35319993 Free PMC article. Review.
-
The Art of Finding the Right Drug Target: Emerging Methods and Strategies.Pharmacol Rev. 2024 Aug 15;76(5):896-914. doi: 10.1124/pharmrev.123.001028. Pharmacol Rev. 2024. PMID: 38866560 Free PMC article. Review.
-
Building consensus on the application of organoid-based drug sensitivity testing in cancer precision medicine and drug development.Theranostics. 2024 May 27;14(8):3300-3316. doi: 10.7150/thno.96027. eCollection 2024. Theranostics. 2024. PMID: 38855182 Free PMC article. Review.
-
Lung Organoids in Smoking Research: Current Advances and Future Promises.Biomolecules. 2022 Oct 12;12(10):1463. doi: 10.3390/biom12101463. Biomolecules. 2022. PMID: 36291672 Free PMC article. Review.
References
-
- Basil M. C., Katzen J., Engler A. E., Guo M., Herriges M. J., Kathiriya J. J., Windmueller R., Ysasi A. B., Zacharias W. J., Chapman H. A., Kotton D. N., Rock J. R., Snoeck H. W., Vunjak-Novakovic G., Whitsett J. A., Morrisey E. E., The cellular and physiological basis for lung repair and regeneration: Past, present, and future. Cell Stem Cell 26, 482–502 (2020). - PMC - PubMed
-
- Volckaert T., Yuan T., Chao C. M., Bell H., Sitaula A., Szimmtenings L., El Agha E., Chanda D., Majka S., Bellusci S., Thannickal V. J., Fässler R., De Langhe S. P., Fgf10-hippo epithelial-mesenchymal crosstalk maintains and recruits lung basal stem cells. Dev. Cell 43, 48–59.e5 (2017). - PMC - PubMed
-
- Conlon T. M., John-Schuster G., Heide D., Pfister D., Lehmann M., Hu Y., Ertüz Z., Lopez M. A., Ansari M., Strunz M., Mayr C., Ciminieri C., Costa R., Kohlhepp M. S., Guillot A., Günes G., Jeridi A., Funk M. C., Beroshvili G., Prokosch S., Hetzer J., Verleden S. E., Alsafadi H., Lindner M., Burgstaller G., Becker L., Irmler M., Dudek M., Janzen J., Goffin E., Gosens R., Knolle P., Pirotte B., Stoeger T., Beckers J., Wagner D., Singh I., Theis F. J., de Angelis M. H., O’Connor T., Tacke F., Boutros M., Dejardin E., Eickelberg O., Schiller H. B., Königshoff M., Heikenwalder M., Yildirim A. Ö., Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature 588, 151–156 (2020). - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical