Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 6;144(13):6050-6058.
doi: 10.1021/jacs.2c01136. Epub 2022 Mar 24.

Self-Immolative Hydroxybenzylamine Linkers for Traceless Protein Modification

Affiliations

Self-Immolative Hydroxybenzylamine Linkers for Traceless Protein Modification

Douglas A Rose et al. J Am Chem Soc. .

Abstract

Traceless self-immolative linkers are widely used for the reversible modification of proteins and peptides. This article describes a new class of traceless linkers based on ortho- or para-hydroxybenzylamines. The introduction of electron-donating substituents on the aromatic core stabilizes the quinone methide intermediate, thus providing a platform for payload release that can be modulated. To determine the extent to which the electronics affect the rate of release, we prepared a small library of hydroxybenzylamine linkers with varied electronics in the aromatic core, resulting in half-lives ranging from 20 to 144 h. Optimization of the linker design was carried out with mechanistic insights from density functional theory (DFT) and the in silico design of an intramolecular trapping agent through the use of DFT and intramolecular distortion energy calculations. This resulted in the development of a faster self-immolative linker with a half-life of 4.6 h. To demonstrate their effectiveness as traceless linkers for bioconjugation, reversible protein-polyethylene glycol conjugates with a model protein lysozyme were prepared, which had reduced protein activity but recovered ≥94% activity upon traceless release of the polymer. This new class of linkers with tunable release rates expands the traceless linkers toolbox for a variety of bioconjugation applications.

PubMed Disclaimer

Publication types

LinkOut - more resources