Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar 9;14(6):1390.
doi: 10.3390/cancers14061390.

Short-Term Fasting Synergizes with Solid Cancer Therapy by Boosting Antitumor Immunity

Affiliations
Review

Short-Term Fasting Synergizes with Solid Cancer Therapy by Boosting Antitumor Immunity

Nadia de Gruil et al. Cancers (Basel). .

Abstract

Short-term fasting (STF), using a low caloric, low protein fasting mimicking diet (FMD), appears to be a promising strategy to enhance chemotherapy-based cancer efficacy, while potentially alleviating toxicity. Preclinical results suggest that enhanced tumor immunity and decreased growth signaling, via lowering of circulating insulin and insulin growth factor 1 (IGF-1) levels form the potential underlying mechanisms. STF may boost anti-tumor responses by promoting tumor immunogenicity and decreasing local immunosuppression. These findings warrant further studies focused on the combination of STF, not only with chemotherapy, but also with immunotherapy to evaluate the full range of benefits of STF in cancer treatment. Here, we delineate the underlying anticancer mechanisms of fasting. We summarize preclinical evidence of STF boosting antitumor immunity and alleviating immunosuppression, as well as the clinical findings reporting the immunomodulatory effects of STF during various cancer treatments, including immunotherapy.

Keywords: cancer immunity; cancer therapy; chemotherapy; fasting mimicking diet; immunomodulation; immunotherapy; short-term fasting.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of article selection.
Figure 2
Figure 2
Immunomodulatory mechanisms of short-term fasting [STF] during anticancer therapy. STF reduces immunosuppression and enhances antitumor immunity via the following mechanisms established from preclinical studies: CD73 downregulation in cancer cells causes decreased adenosine release, which in turn diminishes immunosuppressive M2-type macrophage polarization. Decreased heme oxygenase-1 (HO-1) production by cancer cells (and M2 macrophages) releases inhibition of regulatory T (Tregs) cells on CD8+ cytotoxic T cells directly as well as direct inhibition from HO-1. Lowered glycolysis inhibits macrophage and granulocyte colony-stimulating factor (M-CSF, G-CSF) secretion by cancer cells. Consequently less myeloid derived suppressor cells are mobilized from the bone marrow. Hematopoietic stem cell regeneration of common lymphoid progenitors (CLP), naïve T cells and accumulation of memory T cells is observed centrally. Peripheral increase of CD8+ and CD4+ T cells is observed after refeeding and might replenish exhausted T cells as well as increase tumor antigen recognition chance. Autophagy induction stimulates tumoricidal M1 macrophage differentiation, which can support antitumor immunity. Figure 2 is adapted from “Cancer Immunoediting”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.

Similar articles

Cited by

References

    1. Zitvogel L., Apetoh L., Ghiringhelli F., Kroemer G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008;8:59–73. doi: 10.1038/nri2216. - DOI - PubMed
    1. Andre F., Dieci M.V., Dubsky P., Sotiriou C., Curigliano G., Denkert C., Loi S. Molecular pathways: Involvement of immune pathways in the therapeutic response and outcome in breast cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013;19:28–33. doi: 10.1158/1078-0432.CCR-11-2701. - DOI - PubMed
    1. Pietrocola F., Pol J., Vacchelli E., Rao S., Enot D.P., Baracco E.E., Levesque S., Castoldi F., Jacquelot N., Yamazaki T., et al. Caloric Restriction Mimetics Enhance Anticancer Immunosurveillance. Cancer Cell. 2016;30:147–160. doi: 10.1016/j.ccell.2016.05.016. - DOI - PMC - PubMed
    1. Di Biase S., Lee C., Brandhorst S., Manes B., Buono R., Cheng C.W., Cacciottolo M., Martin-Montalvo A., de Cabo R., Wei M., et al. Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor Cytotoxicity. Cancer Cell. 2016;30:136–146. doi: 10.1016/j.ccell.2016.06.005. - DOI - PMC - PubMed
    1. Lee C., Raffaghello L., Brandhorst S., Safdie F.M., Bianchi G., Martin-Montalvo A., Pistoia V., Wei M., Hwang S., Merlino A., et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 2012;4:124ra27. doi: 10.1126/scitranslmed.3003293. - DOI - PMC - PubMed

LinkOut - more resources