Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar 10;14(6):1432.
doi: 10.3390/cancers14061432.

Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading

Affiliations
Review

Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading

Lelio Guida et al. Cancers (Basel). .

Abstract

Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.

Keywords: MRI; cerebral glioma; cerebrovascular reactivity; glioblastoma; hemodynamic; perfusion MRI; perfusion computed tomography.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Publication per years of different hemodynamic imaging modalities and gliomas. DSC and DCE-MRI have been the subject of more intense research in glioma imaging, followed by ASL-MRI and PCT. IVIM-DWI and BOLD-CVR can also provide different hemodynamic information and in recent years are becoming the focus of active research.
Figure 2
Figure 2
The derivation of perfusion parameters from the signal-response time curve is shown. The signal response time-curve is acquired during contrast bolus passage in the studied region-of-interest. From the signal response time-curve the changes of bolus concentration are estimated (tissue bolus concentration time-curve). Tissue bolus concentration time-curve is processed with mathematical models enabling a qualitative, semi-quantitative or quantitative assessment/measurement of perfusion parameters. Panel (A) Simplified signal response time curve acquired during DSC-MRI. Panel (B) Simplified tissue bolus concentration time-curve. Panel (C) Deconvoluted tissue bolus concentration time-curve to tissue response time-curve. Panel (D) Simplified signal response time-curve acquired during DCE-MRI. Panel (E) Schematic representation of permeability parameters derived from DCE-MRI. (Adapted from Zhang, J.; Liu, H.; Tong, H.; Wang, S.; Yang, Y.; Liu, G.; Zhang, W. Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges. Contrast Media Mol. Imaging 2017, 2017, 7064120. https://doi.org/10.1155/2017/7064120). Abbreviations: PH, peak height; PSR, percentage signal recovery; other abbreviations are defined in Table 2.
Figure 3
Figure 3
Cerebrosvascular reactivity. Panel (A) shows a schematic of encroached vasodilatory reserve and downstream of stenosis. Upon vasodilatory stimulus, all vessels will be stimulated to dilate, but flow increase in those with preserved vasodilatory reserve will reduce the flow distal to regional resistance. (Adapted by Sobczyk, O.; Battisti-Charbonney, A.; Fierstra, J.; Mandell, D.M.; Poublanc, J.; Crawley, A.P.; Mikulis, D.J.; Duffin, J.; Fisher, J.A. A conceptual model for CO2-induced redistribution of cerebral blood flow with experimental confirmation using BOLD MRI. NeuroImage 2014, 92, 56–68. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2014.01.051). Panel (B) shows a controlled standardized hypercapnic stimulus and its correlation to BOLD signal change.

Similar articles

Cited by

References

    1. Ostrom Q.T., Patil N., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-Oncology. 2020;22:iv1–iv96. doi: 10.1093/neuonc/noaa200. - DOI - PMC - PubMed
    1. Weller M., van den Bent M., Preusser M., Le Rhun E., Tonn J.C., Minniti G., Bendszus M., Balana C., Chinot O., Dirven L., et al. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. Oncol. 2020;18:170–186. doi: 10.1038/s41571-020-00447-z. - DOI - PMC - PubMed
    1. Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J.B., Belanger K., Brandes A.A., Marosi C., Bogdahn U., et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330. - DOI - PubMed
    1. Jacobs D.I., Kumthekar P., Stell B.V., Grimm S.A., Rademaker A.W., Rice L., Chandler J.P., Muro K., Marymont M., Helenowski I.B., et al. Concordance of Patient and Caregiver Reports in Evaluating Quality of Life in Patients with Malignant Gliomas and an Assessment of Caregiver Burden. Neuro-Oncol. Pract. 2014;1:47–54. doi: 10.1093/nop/npu004. - DOI - PMC - PubMed
    1. Gately L., McLachlan S., Dowling A., Philip J. Life beyond a Diagnosis of Glioblastoma: A Systematic Review of the Literature. J. Cancer Surviv. 2017;11:447–452. doi: 10.1007/s11764-017-0602-7. - DOI - PubMed