Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar 18;23(6):3303.
doi: 10.3390/ijms23063303.

Short-Chain Fatty Acid Receptors and Cardiovascular Function

Affiliations
Review

Short-Chain Fatty Acid Receptors and Cardiovascular Function

Anastasios Lymperopoulos et al. Int J Mol Sci. .

Abstract

Increasing experimental and clinical evidence points toward a very important role for the gut microbiome and its associated metabolism in human health and disease, including in cardiovascular disorders. Free fatty acids (FFAs) are metabolically produced and utilized as energy substrates during almost every biological process in the human body. Contrary to long- and medium-chain FFAs, which are mainly synthesized from dietary triglycerides, short-chain FFAs (SCFAs) derive from the gut microbiota-mediated fermentation of indigestible dietary fiber. Originally thought to serve only as energy sources, FFAs are now known to act as ligands for a specific group of cell surface receptors called FFA receptors (FFARs), thereby inducing intracellular signaling to exert a variety of cellular and tissue effects. All FFARs are G protein-coupled receptors (GPCRs) that play integral roles in the regulation of metabolism, immunity, inflammation, hormone/neurotransmitter secretion, etc. Four different FFAR types are known to date, with FFAR1 (formerly known as GPR40) and FFAR4 (formerly known as GPR120) mediating long- and medium-chain FFA actions, while FFAR3 (formerly GPR41) and FFAR2 (formerly GPR43) are essentially the SCFA receptors (SCFARs), responding to all SCFAs, including acetic acid, propionic acid, and butyric acid. As with various other organ systems/tissues, the important roles the SCFARs (FFAR2 and FFAR3) play in physiology and in various disorders of the cardiovascular system have been revealed over the last fifteen years. In this review, we discuss the cardiovascular implications of some key (patho)physiological functions of SCFAR signaling pathways, particularly those regulating the neurohormonal control of circulation and adipose tissue homeostasis. Wherever appropriate, we also highlight the potential of these receptors as therapeutic targets for cardiovascular disorders.

Keywords: FFAR2; FFAR3; GPCR; SCFA; adipose tissue; cardiovascular; hormone secretion; neuronal; signal transduction; sympathetic.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of financial or of any other type of interest.

Figures

Figure 1
Figure 1
The cardiovascular physiology relevant to FFAR2 signaling. AC: Adenylyl cyclase; DAG: Diacylglycerol; ERK: Extracellular signal-regulated (mitogen-activated protein, MAP) kinase; IP3: Inositol 1′, 4′, 5′-trisphosphate; PLC: Phospholipase C; PKC: Protein kinase C; “???” indicates a lack of consensus (currently) for the action depicted. (See text for details and for all other molecular acronym descriptions.)
Figure 2
Figure 2
The cardiovascular physiology relevant to FFAR3 signaling. BP: Blood pressure; ERK: Extracellular signal-regulated (mitogen-activated protein, MAP) kinase; HR: Heart rate; IP3: Inositol 1′, 4′, 5′-trisphosphate; NE: Norepinephrine (noradrenaline); P: Phosphorylation; RGS4: Regulator of G protein signaling protein-4; SGLT2i: Sodium-glucose co-transporter type 2 inhibitor; SNS: Sympathetic nervous system; “???” indicates a signaling mechanism that is (currently) unknown. (See text for details and for all other molecular acronym descriptions.)

Similar articles

Cited by

References

    1. Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2020;100:171–210. doi: 10.1152/physrev.00041.2018. - DOI - PubMed
    1. Mishra S.P., Karunakar P., Taraphder S., Yadav H. Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines. 2020;8:154. doi: 10.3390/biomedicines8060154. - DOI - PMC - PubMed
    1. Nøhr M.K., Pedersen M.H., Gille A., Egerod K.L., Engelstoft M.S., Husted A.S., Sichlau R.M., Grunddal K.V., Poulsen S.S., Han S., et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology. 2013;154:3552–3564. doi: 10.1210/en.2013-1142. - DOI - PubMed
    1. Samuel B.S., Shaito A., Motoike T., Rey F.E., Backhed F., Manchester J.K., Hammer R.E., Williams S.C., Crowley J., Yanagisawa M., et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. USA. 2008;105:16767–16772. doi: 10.1073/pnas.0808567105. - DOI - PMC - PubMed
    1. Shimizu H., Masujima Y., Ushiroda C., Mizushima R., Taira S., Ohue-Kitano R., Kimura I. Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci. Rep. 2019;9:16574. doi: 10.1038/s41598-019-53242-x. - DOI - PMC - PubMed

MeSH terms

Substances