Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Mar 9;19(6):3232.
doi: 10.3390/ijerph19063232.

PAEs Derivatives' Design for Insulation: Integrated In-Silico Methods, Functional Assessment and Environmentally Friendly Molecular Modification

Affiliations

PAEs Derivatives' Design for Insulation: Integrated In-Silico Methods, Functional Assessment and Environmentally Friendly Molecular Modification

Haigang Zhang et al. Int J Environ Res Public Health. .

Abstract

As a common substance in production and life, phthalic acid esters (PAEs), the main component of plastics, have brought more and more serious problems to the environment. This study normalized the insulation, toxicity, and bioconcentration data of 13 PAEs to eliminate the dimensional coefficients of each index, and then used the comprehensive index method to calculate the comprehensive effect value of PAEs with three properties. The comprehensive effect value was used as the data source to construct the 3D-QSAR model of PAE molecular comprehensive effect. The DAP was selected as the target molecule, the distribution of each force field in the three-dimensional equipotential map was analyzed, and 30 molecular modification schemes were created. The constructed single-effect models of insulation, toxicity, and bioconcentration of PAEs and the scoring function module of DS software were used to evaluate the stability and environmental friendliness of PAE derivative molecules. Four PAE derivatives were screened for increased comprehensive effects, enhanced insulation, and reduced toxicity and bioconcentration. By calculating the binding energy of the target molecule and the derivative molecule with the degrading enzyme under different applied electric fields, it was found that the binding energy of DAP-1-NO2-2-CH2C6H5 decreases more than DAP does when there is an applied electric field, indicating that the degradation ability of degrading enzymes on PAE derivative molecules is reduced, which indirectly proves that the insulation is enhanced. The innovation of this paper lies in the insulation, toxicity, and bioenrichment data of PAEs being processed by mathematical method for the first time, and PAEs with high insulation, low toxicity, and low bioconcentration were designed by building a comprehensive model.

Keywords: 3D-QSAR; composite index method; insulation; phthalic acid esters; plasticiser.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Three-dimensional contour maps of (A) steric, (B) electrostatic, (C) hydrophobic, and (D) hydrogen bond acceptor fields.
Figure 2
Figure 2
Site map of the molecular modification of DAP.

Similar articles

Cited by

References

    1. Wang T., Hu X.G., Zhou Q.X. The research progress in migration, distribution, biological eddects and analytical methods of microplastics. Chin. Sci. Bull. 2018;63:385–395. doi: 10.1007/s11425-016-0564-5. - DOI
    1. Sadri S.S., Thompson R.C. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Mar. Pollut. Bull. 2014;81:55–60. doi: 10.1016/j.marpolbul.2014.02.020. - DOI - PubMed
    1. Benson N.U., Fred-Ahmadu O.H. Microplastics distribution and characterization in epipsammic sediments of tropical Atlantic Ocean, Nigeria. Sci. Total Environ. 2020;730:139013. doi: 10.1016/j.scitotenv.2020.139013. - DOI - PubMed
    1. Gorrasi G., Bugatti V., Viscusi G., Vittoria V. Physical and barrier properties of chemically modified pectin with polycaprolactone through an environmentally friendly process. Colloid Polym. Sci. 2021;299:429–437. doi: 10.1007/s00396-020-04699-0. - DOI
    1. Aaliya B., Sunooj K.V., Lackner M. Biopolymer composites: A review. Int. J. Biochem. Plast. 2021;3:40–84. doi: 10.1080/24759651.2021.1881214. - DOI