Optimized APEX2 peroxidase-mediated proximity labeling in fast- and slow-growing mycobacteria
- PMID: 35331378
- PMCID: PMC11628366
- DOI: 10.1016/bs.mie.2021.11.021
Optimized APEX2 peroxidase-mediated proximity labeling in fast- and slow-growing mycobacteria
Abstract
Proximity labeling is a technology for tagging proteins and other biomolecules in living cells. These methods use enzymes that generate reactive species whose properties afford high spatial resolution for the localization of proteins to subcellular compartments and the identification of endogenous interaction partners. Here we present the adaptation of the engineered peroxidase APEX2 to proximity labeling in mycobacteria, including the human pathogen Mycobacterium tuberculosis. APEX2 is uniquely suited for general use in bacteria because unlike other proximity labeling enzymes, it does not depend on metabolites like ATP that are found in the cytoplasm, but are absent from the bacterial periplasm. Importantly, we found that in slow-growing mycobacteria like M. tuberculosis, codon usage optimization is required for APEX2 export into the periplasm via fusion to an N-terminal secretion signal. APEX2 expressed from codon-optimized genes affords robust, compartment-specific protein labeling in the cytoplasm and the periplasm of both fast- and slow-growing species. Here we detail these updated constructs and provide an optimized protocol for APEX2-mediated protein labeling in mycobacteria. We expect this approach to be broadly useful for determining the localization of specific proteins, cataloging subcellular proteomes, and identifying interaction partners of 'bait' proteins expressed as fusions to APEX2.
Keywords: APEX2; Mycobacteria; Periplasm; Peroxidase; Protein labeling; Proximity labeling; Tuberculosis.
Copyright © 2022 Elsevier Inc. All rights reserved.
Figures






Similar articles
-
Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells.Angew Chem Int Ed Engl. 2019 Aug 19;58(34):11763-11767. doi: 10.1002/anie.201905949. Epub 2019 Jul 26. Angew Chem Int Ed Engl. 2019. PMID: 31240809
-
The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications.Protein Sci. 2019 Sep;28(9):1703-1712. doi: 10.1002/pro.3685. Epub 2019 Aug 6. Protein Sci. 2019. PMID: 31306516 Free PMC article.
-
APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei.mSphere. 2021 Feb 10;6(1):e01090-20. doi: 10.1128/mSphere.01090-20. mSphere. 2021. PMID: 33568455 Free PMC article.
-
APEX2- tagging of Sigma 1-receptor indicates subcellular protein topology with cytosolic N-terminus and ER luminal C-terminus.Protein Cell. 2018 Aug;9(8):733-737. doi: 10.1007/s13238-017-0468-5. Protein Cell. 2018. PMID: 28929457 Free PMC article. Review. No abstract available.
-
Proximity-dependent labeling methods for proteomic profiling in living cells: An update.Wiley Interdiscip Rev Dev Biol. 2021 Jan;10(1):e392. doi: 10.1002/wdev.392. Epub 2020 Sep 10. Wiley Interdiscip Rev Dev Biol. 2021. PMID: 32909689 Free PMC article. Review.
Cited by
-
Proteomics from compartment-specific APEX2 labeling in Mycobacterium tuberculosis reveals Type VII secretion substrates in the cell wall.Cell Chem Biol. 2024 Mar 21;31(3):523-533.e4. doi: 10.1016/j.chembiol.2023.10.013. Epub 2023 Nov 14. Cell Chem Biol. 2024. PMID: 37967559 Free PMC article.
-
A split ALFA tag-nanobody system for protein localization and proximity proteomics in mycobacteria.bioRxiv [Preprint]. 2025 Mar 28:2025.03.22.644702. doi: 10.1101/2025.03.22.644702. bioRxiv. 2025. Update in: mBio. 2025 Aug 13;16(8):e0097125. doi: 10.1128/mbio.00971-25. PMID: 40196699 Free PMC article. Updated. Preprint.
-
A proteomic and functional view of intrabacterial lipid inclusion biogenesis in mycobacteria.mBio. 2025 Apr 9;16(4):e0147524. doi: 10.1128/mbio.01475-24. Epub 2025 Feb 25. mBio. 2025. PMID: 39998225 Free PMC article.
-
Chemical approaches to unraveling the biology of mycobacteria.Cell Chem Biol. 2023 May 18;30(5):420-435. doi: 10.1016/j.chembiol.2023.04.014. Cell Chem Biol. 2023. PMID: 37207631 Free PMC article. Review.
-
Protease shaving of Mycobacterium tuberculosis facilitates vaccine antigen discovery and delivery of novel cargoes to the Mtb surface.bioRxiv [Preprint]. 2024 Jul 2:2024.07.02.601718. doi: 10.1101/2024.07.02.601718. bioRxiv. 2024. Update in: Microbiol Spectr. 2025 Feb 04;13(2):e0227724. doi: 10.1128/spectrum.02277-24. PMID: 39005324 Free PMC article. Updated. Preprint.
References
-
- Beste DJV, Peters J, Hooper T, Avignone-Rossa C, Bushell ME, & McFadden J (2005). Compiling a Molecular Inventory for Mycobacterium bovis BCG at Two Growth Rates: Evidence for Growth Rate-Mediated Regulation of Ribosome Biosynthesis and Lipid Metabolism. Journal of Bacteriology, 187(5), 1677–1684. 10.1128/JB.187.5.1677-1684.2005 - DOI - PMC - PubMed
-
- Drage MG, Tsai H-C, Pecora ND, Cheng T-Y, Arida AR, Shukla S, Rojas RE, Seshadri C, Moody DB, Boom WH, Sacchettini JC, & Harding CV (2010). Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nature Structural & Molecular Biology, 17(9), 1088–1095. 10.1038/nsmb.1869 - DOI - PMC - PubMed
-
- Li M, Patel HV, Cognetta AB, Smith TC, Mallick I, Cavalier J-F, Previti ML, Canaan S, Aldridge BB, Cravatt BF, & Seeliger JC (2021). Identification of cell wall synthesis inhibitors active against Mycobacterium tuberculosis by competitive activity-based protein profiling. Cell Chemical Biology. 10.1016/j.chembiol.2021.09.002 - DOI - PMC - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials