Advanced Impedance Spectroscopy for QCM Sensor in Liquid Medium
- PMID: 35336507
- PMCID: PMC8949602
- DOI: 10.3390/s22062337
Advanced Impedance Spectroscopy for QCM Sensor in Liquid Medium
Abstract
Technological evolution has allowed impedance analysis to become a versatile and efficient method for the precise measurement of the equivalent electrical parameters of the quartz crystal microbalance (QCM). By measuring the dissipation factor, or another equivalent electrical parameter, the QCM sensor provides access to the sample mass per unit area and its physical parameters, thus ensuring a detailed analysis. This paper aims to demonstrate the benefits of advanced impedance spectroscopy concerning the Butterworth-van Dyke (BVD) model for QCM sensors immersed with an electrode in a liquid medium. The support instrument in this study is a fast and accurate software-defined virtual impedance analyzer (VIA) with real-time computing capabilities of the QCM sensor's electric model. Advanced software methods of self-calibration, real-time compensation, innovative post-compensation, and simultaneous calculation by several methods are the experimental resources of the results presented in this paper. The experimental results validate the theoretical concepts and demonstrate both the capabilities of VIA as an instrument and the significant improvements brought by the advanced software methods of impedance spectroscopy analysis related to the BVD model.
Keywords: QCM sensors; impedance analysis; in-liquid measurements; piezoelectric materials; virtual instrumentation.
Conflict of interest statement
The authors declare no conflict of interest.
Figures









Similar articles
-
Quartz Crystal Microbalance with Impedance Analysis Based on Virtual Instruments: Experimental Study.Sensors (Basel). 2022 Feb 15;22(4):1506. doi: 10.3390/s22041506. Sensors (Basel). 2022. PMID: 35214403 Free PMC article.
-
Broadband 120 MHz Impedance Quartz Crystal Microbalance (QCM) with Calibrated Resistance and Quantitative Dissipation for Biosensing Measurements at Higher Harmonic Frequencies.Biosensors (Basel). 2016 May 25;6(2):23. doi: 10.3390/bios6020023. Biosensors (Basel). 2016. PMID: 27231946 Free PMC article.
-
Piezoelectric biosensors assisted with electroacoustic impedance spectroscopy: a tool for accurate quantitative molecular recognition analysis.J Mol Recognit. 2009 Mar-Apr;22(2):129-37. doi: 10.1002/jmr.907. J Mol Recognit. 2009. PMID: 18680206
-
Lateral field excited quartz crystal microbalances for biosensing applications.Biointerphases. 2020 Jun 2;15(3):030801. doi: 10.1116/6.0000144. Biointerphases. 2020. PMID: 32486650 Review.
-
Quartz Crystal Microbalance Electronic Interfacing Systems: A Review.Sensors (Basel). 2017 Dec 5;17(12):2799. doi: 10.3390/s17122799. Sensors (Basel). 2017. PMID: 29206212 Free PMC article. Review.
Cited by
-
Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis.Micromachines (Basel). 2022 Sep 1;13(9):1441. doi: 10.3390/mi13091441. Micromachines (Basel). 2022. PMID: 36144064 Free PMC article. Review.
-
Effect of Load on Quartz Crystal Microbalance Sensor Response Addressed Using Fractional Order Calculus.Sensors (Basel). 2023 Jul 28;23(15):6768. doi: 10.3390/s23156768. Sensors (Basel). 2023. PMID: 37571551 Free PMC article.
-
Virtual Quartz Crystal Microbalance: Bioinspired Resonant Frequency Tracking.Biomimetics (Basel). 2022 Oct 8;7(4):156. doi: 10.3390/biomimetics7040156. Biomimetics (Basel). 2022. PMID: 36278713 Free PMC article.
-
Influence of Front-End Electronics on Metrological Performance of QCM Systems.Sensors (Basel). 2024 May 25;24(11):3401. doi: 10.3390/s24113401. Sensors (Basel). 2024. PMID: 38894192 Free PMC article.
-
Spurious Resonance of the QCM Sensor: Load Analysis Based on Impedance Spectroscopy.Sensors (Basel). 2023 May 21;23(10):4939. doi: 10.3390/s23104939. Sensors (Basel). 2023. PMID: 37430852 Free PMC article.
References
-
- Kanazawa K.K., Gordon J.G., II The oscillation frequency of a quartz resonator in contact with a liquid. Anal. Chim. Acta. 1985;175:99–105. doi: 10.1016/S0003-2670(00)82721-X. - DOI
-
- Reed C.E., Kanazawa K.K., Kaufman J.H. Physical description of a viscoelastically loaded AT-cut quartz resonator. J. Appl. Phys. 1990;68:1993–2001. doi: 10.1063/1.346548. - DOI
-
- Lee C.F., Yan T.R., Wang T.H. Long-term monitoring of Caco-2 cell growth process using a QCM-cell system. Sens. Actuators B Chem. 2012;166:165–171. doi: 10.1016/j.snb.2012.02.027. - DOI
MeSH terms
Substances
LinkOut - more resources
Full Text Sources