Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar 21;15(3):384.
doi: 10.3390/ph15030384.

Recommendations to Synthetize Old and New β-Lactamases Inhibitors: A Review to Encourage Further Production

Affiliations
Review

Recommendations to Synthetize Old and New β-Lactamases Inhibitors: A Review to Encourage Further Production

Silvana Alfei et al. Pharmaceuticals (Basel). .

Erratum in

Abstract

The increasing emergence of bacteria producing β-lactamases enzymes (BLEs), able to inactivate the available β-lactam antibiotics (BLAs), causing the hydrolytic opening of their β-lactam ring, is one of the global major warnings. According to Ambler classification, BLEs are grouped in serine-BLEs (SBLEs) of class A, C, and D, and metal-BLEs (MBLEs) of class B. A current strategy to restore no longer functioning BLAs consists of associating them to β-lactamase enzymes inhibitors (BLEsIs), which, interacting with BLEs, prevent them hydrolyzing to the associated antibiotic. Worryingly, the inhibitors that are clinically approved are very few and inhibit only most of class A and C SBLEs, leaving several class D and all MBLEs of class B untouched. Numerous non-clinically approved new molecules are in development, which have shown broad and ultra-broad spectrum of action, some of them also being active on the New Delhi metal-β-lactamase-1 (NDM-1), which can hydrolyze all available BLAs except for aztreonam. To not duplicate the existing review concerning this topic, we have herein examined BLEsIs by a chemistry approach. To this end, we have reviewed both the long-established synthesis adopted to prepare the old BLEsIs, those proposed to achieve the BLEsIs that are newly approved, and those recently reported to prepare the most relevant molecules yet in development, which have shown high potency, providing for each synthesis the related reaction scheme.

Keywords: metal-β-lactamases; multi-drug resistant (MDR) bacteria; optimized synthetic procedures; serine β-lactamases; β-lactam antibiotics; β-lactamase enzymes; β-lactamase enzymes inhibitors.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The β-lactam core structures. Penams (1), carbapenams (2), oxapenams (3) (a); penems (4), carbapenems (5), oxapenems (6) (b); cephems (7), carbacephems (8), oxacephem (9) (c); cepham (10), carbacepham (11), oxacephem (12) (d); monobactam (13) (e).
Figure 2
Figure 2
Chemical structure of carbapenems.
Scheme 1
Scheme 1
Inactivation of BLAs through the hydrolytic action of SBLEs.
Scheme 2
Scheme 2
Biosynthesis of CA (C8H9NO5, MW: 199.16), IUPAC name: (2R,3Z,5R)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo [3.2.0] heptane-2-carboxylic acid.
Scheme 3
Scheme 3
Synthesis of sulbactam from 6-APA (C8H11NO5S, MW = 233.2), IUPAC name: (2S,5R)-3,3-dimethyl-4,4,7-trioxo-4lambda6-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid.
Scheme 4
Scheme 4
Synthesis of tazobactam from 6-APA (C10H12N4O5S, MW = 300.3), IUPAC name: 3S-methyl-7-oxo-3-(1H-1,2,3-triazol-1-ylmethyl)-4-thia-1-azabicyclo [3.2.0] heptan-2S-carboxylic acid 4,4-dioxide.
Scheme 5
Scheme 5
Synthesis of tazobactam according to the method proposed by Shuhao et al.
Scheme 6
Scheme 6
Synthesis of tebipenem pivoxil (C22H31N3O6S2, MW: 497.6), IUPAC name: 2,2-dimethylpropanoyloxymethyl (4R,5S,6S)-3-[1-(4,5-dihydro-1,3-thiazol-2-yl) azetidin-3-yl] sulfanyl-6-[(1R)-1-hydroxyethyl]-4-methyl-7-oxo-1-azabicyclo [3.2.0] hept-2-ene-2-carboxylate.
Scheme 7
Scheme 7
Synthesis of enmetazobactam, formerly AAI101 (C11H14N4O5S, MW = 314.3), IUPAC name: (2S,3S,5R)-3-methyl-3-[(3-methyltriazol-3-ium-1-yl)-methyl]-4,4,7-trioxo-4λ6-thia-1-azabicyclo [3.2.0] heptane-2-carboxylate.
Scheme 8
Scheme 8
Synthetic route to prepare 6-methylidene-penem carboxylic acid sodium salts starting from 6-APA.
Scheme 9
Scheme 9
Synthetic route to prepare LN-1-255 from 6-APA (C22H19N2NaO9S, MW = 510.4), IUPAC name: (2S,3R,5R,6Z)-4-thia-1-azabicyclo [3.2.0] heptane-2-carboxylic acid, 3-[[[(3,4-dihydroxyphenyl) acetyl] oxy] methyl]-3-methyl-7-oxo-6-(2-pyridinylmethylene)-4,4-dioxide, monosodium salt.
Scheme 10
Scheme 10
Synthesis of avibactam (MF: C7H11N3O6S, MW = 265.25), IUPAC name: [(2S,5R)-2-carbamoyl-7-oxo-1,6-diazabicyclo [3.2.1] octan-6-yl] hydrogen sulphate.
Scheme 11
Scheme 11
Synthesis of relebactam (C12H20N4O6S, MW = 348.4, IUPAC name: [(2S,5R)-7-oxo-2-(piperidin-4-ylcarbamoyl)-1,6-diazabicyclo [3.2.1] octan-6-yl] hydrogen sulphate.
Scheme 12
Scheme 12
Synthesis of zidebactam (C13H21N5O7S, MW = 391.4), IUPAC name: [(2S,5R)-7-oxo-2-[[[(3R)-piperidine-3-carbonyl] amino] carbamoyl]-1,6-diazabicyclo [3.2.1] octan-6-yl] hydrogen sulphate.
Scheme 13
Scheme 13
Synthesis of WCK-4234 (C7H8N3NaO5S, MW = 269.3), IUPAC name: sodium (2S,5R)-2-cyano-7-oxo-1,6-diazabicyclo [3.2.1] octan-6-yl sulfate.
Scheme 14
Scheme 14
Part A: Synthesis of the ethyl bromo-fluoroacetates I and II used to prepare compounds 10 and ETX-0282 of Part B. Part B: Synthesis of ETX-1317 and of its orally administrable prodrug ETX-0282. ETX-1317 (C10H12FN3O5, MW = 295.2), IUPAC name: (2R)-2-(((2S,5R)-2-carbamoyl-3-methyl-7-oxo-1,6-diazabicyclo [3.2.1] oct-3-en-6-yl)-oxy)-2-fluoroacetic acid. ETX-0282 (C13H18FN3O5, MW = 315.3), IUPAC name: isopropyl (R)-2-(((1R,2R,5R)-2-carbamoyl-4-methyl-7-oxo-1,6-diazabicyclo [3.2.1] oct-3-en-6-yl)-oxy)-2-fluoroacetate.
Scheme 15
Scheme 15
Synthesis of durlobactam (C8H11N3O6S, MW = 277.36, IUPAC name, [(2S,5R)-2-carbamoyl-3-methyl-7-oxo-1,6-diazabicyclo [3.2.1] oct-3-en-6-yl] hydrogen sulphate.
Scheme 16
Scheme 16
Synthesis of ANT-3310 (C6H9 FN2O5S, MW = 240.2), IUPAC name, (2R,5R)-2-fluoro-7-oxo-1,6-diazabicyclo [3.2.1] octan-6-yl hydrogen sulphate.
Scheme 17
Scheme 17
Synthesis of nacubactam (C8H16N4O7S, MW = 324.3), IUPAC name, [(2S,5R)-2-(2-aminoethoxycarbamoyl)-7-oxo-1,6-diazabicyclo [3.2.1] octan-6-yl] hydrogen sulphate.
Scheme 18
Scheme 18
Synthesis of vaborbactam (formerly RPX-7009) (C12H16BNO5S, MW = 297), IUPAC name, 2-[(3R,6S)-2-hydroxy-3-[(2-thiophen-2-ylacetyl)-amino]-oxaborinan-6-yl]-acetic acid.
Scheme 19
Scheme 19
Synthesis of taniborbactam (formerly VNRX-5133), (C19H28BN3O5, MW = 389.3), IUPAC name: (3R)-3-[[2-[4-(2-aminoethylamino)-cyclohexyl]-acetyl]-amino]-2-hydroxy-3,4-dihydro-1,2-benzoxaborinine-8-carboxylic acid.
Scheme 20
Scheme 20
Synthesis of ({4-[tert-Butoxycarbonyl-(2-tert-butoxycarbonylamino-ethyl)-amino]-cyclohexyl}-acetic acid (I).
Scheme 21
Scheme 21
Synthesis of VNRX-7145, also known as ledaborbactam etzadroxil, which is the orally bioavailable prodrug of ledarbobactam (VNRX-5236). VNRX-7145 (C19 H26 B N O7, MW 391.2), IUPAC name: 2-hydroxy-3-propionylamino-3,4-dihydro-2H-1-oxa-2-bora-naphthalene-8-carboxylic acid 2-ethyl-butyryloxymethyl ester. VNRX-5236 (C12 H14 B N O5, MW 263.1), IUPAC name: 2-hydroxy-3-propionylamino-3,4-dihydro-2H-1-oxa-2-bora-naphthalene-8-carboxylic acid.
Scheme 22
Scheme 22
Synthesis of xeruborbactam (formerly QPX7728), (C10H8BFO4, MW = 221.98), IUPAC name: 5-fluoro-2-hydroxy-1,1a,2,7b-tetrahydro-3-oxa-2-bora-cyclopropa[a]naphthalene-4-carboxylic acid.
Scheme 23
Scheme 23
Synthesis of ANT-2681 ANT-2681 (C12H12F2N8O4S2, MW = 434.4), IUPAC name: 5-((4-(2-Carbamimidoylhydrazine-1-carboxamido)-3,5-difluorophenyl) sulphonamide) thiazole-4-carboxamide.

Similar articles

Cited by

References

    1. Tooke C.L., Hinchliffe P., Bragginton E.C., Colenso C.K., Hvievonen V.H.A., Takebayeshi Y., Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019;431:3472–3500. doi: 10.1016/j.jmb.2019.04.002. - DOI - PMC - PubMed
    1. Bush K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018;62:e01076-18. doi: 10.1128/AAC.01076-18. - DOI - PMC - PubMed
    1. List of β-lactam Antibiotics. From Wikipedia, the Free Encyclopedia. [(accessed on 8 February 2022)]. Available online: https://en.wikipedia.org/wiki/List_of_%CE%B2-lactam_antibiotics.
    1. Sauvage E., Kerff F., Terrak M., Ayala J.A., Charlier P. The Penicillin-Binding Proteins: Structure and Role in Peptidoglycan Biosynthesis. FEMS Microbiol. Rev. 2008;32:234–258. doi: 10.1111/j.1574-6976.2008.00105.x. - DOI - PubMed
    1. Palzkill T. Metallo-β-Lactamase Structure and Function. Ann. N. Y. Acad. Sci. 2013;1277:91–104. doi: 10.1111/j.1749-6632.2012.06796.x. - DOI - PMC - PubMed

LinkOut - more resources