Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr;1865(3):194812.
doi: 10.1016/j.bbagrm.2022.194812. Epub 2022 Mar 22.

Sequence-dependent model of genes with dual σ factor preference

Affiliations
Free article

Sequence-dependent model of genes with dual σ factor preference

Ines S C Baptista et al. Biochim Biophys Acta Gene Regul Mech. 2022 Apr.
Free article

Abstract

Escherichia coli uses σ factors to quickly control large gene cohorts during stress conditions. While most of its genes respond to a single σ factor, approximately 5% of them have dual σ factor preference. The most common are those responsive to both σ70, which controls housekeeping genes, and σ38, which activates genes during stationary growth and stresses. Using RNA-seq and flow-cytometry measurements, we show that 'σ70+38 genes' are nearly as upregulated in stationary growth as 'σ38 genes'. Moreover, we find a clear quantitative relationship between their promoter sequence and their response strength to changes in σ38 levels. We then propose and validate a sequence dependent model of σ70+38 genes, with dual sensitivity to σ38 and σ70, that is applicable in the exponential and stationary growth phases, as well in the transient period in between. We further propose a general model, applicable to other stresses and σ factor combinations. Given this, promoters controlling σ70+38 genes (and variants) could become important building blocks of synthetic circuits with predictable, sequence-dependent sensitivity to transitions between the exponential and stationary growth phases.

Keywords: Dual σ factor preference; E. coli; Flow cytometry; RNA-seq; Sequence-dependent gene expression model.

PubMed Disclaimer

Publication types

MeSH terms