POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy
- PMID: 35342192
- PMCID: PMC8958166
- DOI: 10.1038/s41392-022-00900-8
POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy
Erratum in
-
Correction To: POD Nanozyme optimized by charge separation engineering for light/pH activated bacteria catalytic/photodynamic therapy.Signal Transduct Target Ther. 2023 May 24;8(1):214. doi: 10.1038/s41392-023-01476-7. Signal Transduct Target Ther. 2023. PMID: 37225703 Free PMC article. No abstract available.
Abstract
The current feasibility of nanocatalysts in clinical anti-infection therapy, especially for drug-resistant bacteria infection is extremely restrained because of the insufficient reactive oxygen generation. Herein, a novel Ag/Bi2MoO6 (Ag/BMO) nanozyme optimized by charge separation engineering with photoactivated sustainable peroxidase-mimicking activities and NIR-II photodynamic performance was synthesized by solvothermal reaction and photoreduction. The Ag/BMO nanozyme held satisfactory bactericidal performance against methicillin-resistant Staphylococcus aureus (MRSA) (~99.9%). The excellent antibacterial performance of Ag/BMO NPs was ascribed to the corporation of peroxidase-like activity, NIR-II photodynamic behavior, and acidity-enhanced release of Ag+. As revealed by theoretical calculations, the introduction of Ag to BMO made it easier to separate photo-triggered electron-hole pairs for ROS production. And the conduction and valence band potentials of Ag/BMO NPs were favorable for the reduction of O2 to ·O2-. Under 1064 nm laser irradiation, the electron transfer to BMO was beneficial to the reversible change of Mo5+/Mo6+, further improving the peroxidase-like catalytic activity and NIR-II photodynamic performance based on the Russell mechanism. In vivo, the Ag/BMO NPs exhibited promising therapeutic effects towards MRSA-infected wounds. This study enriches the nanozyme research and proves that nanozymes can be rationally optimized by charge separation engineering strategy.
© 2022. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
