Distinct Diet-Microbiota-Metabolism Interactions in Overweight and Obese Pregnant Women: a Metagenomics Approach
- PMID: 35343768
- PMCID: PMC9045358
- DOI: 10.1128/spectrum.00893-21
Distinct Diet-Microbiota-Metabolism Interactions in Overweight and Obese Pregnant Women: a Metagenomics Approach
Abstract
Diet and gut microbiota are known to modulate metabolic health. Our aim was to apply a metagenomics approach to investigate whether the diet-gut microbiota-metabolism and inflammation relationships differ in pregnant overweight and obese women. This cross-sectional study was conducted in overweight (n = 234) and obese (n = 152) women during early pregnancy. Dietary quality was measured by a validated index of diet quality (IDQ). Gut microbiota taxonomic composition and species diversity were assessed by metagenomic profiling (Illumina HiSeq platform). Markers for glucose metabolism (glucose, insulin) and low-grade inflammation (high sensitivity C-reactive protein [hsCRP], glycoprotein acetylation [GlycA]) were analyzed from blood samples. Higher IDQ scores were positively associated with a higher gut microbiota species diversity (r = 0.273, P = 0.007) in obese women, but not in overweight women. Community composition (beta diversity) was associated with the GlycA level in the overweight women (P = 0.04) but not in the obese. Further analysis at the species level revealed a positive association between the abundance of species Alistipes finegoldii and the GlycA level in overweight women (logfold change = 4.74, P = 0.04). This study has been registered at ClinicalTrials.gov under registration no. NCT01922791 (https://clinicaltrials.gov/ct2/show/NCT01922791). IMPORTANCE We observed partially distinct diet-gut microbiota-metabolism and inflammation responses in overweight and obese pregnant women. In overweight women, gut microbiota community composition and the relative abundance of A. finegoldii were associated with an inflammatory status. In obese women, a higher dietary quality was related to a higher gut microbiota diversity and a healthy inflammatory status.
Keywords: diet quality; metabolism; metagenomic; microbiota diversity; obese; obesity; overweight.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- O’Keefe SJ, Li JV, Lahti LM, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, Vipperla K, Naidoo V, Mtshali L, Tims S, Puylaert PGB, DeLany J, Krasinskas A, Benefiel AC, Kaseb HO, Newton K, Nicholson JK, de Vos WM, Gaskins HR, Zoetendal EG. 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6:6342. doi: 10.1038/ncomms7342. - DOI - PMC - PubMed
-
- Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, De Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O, Guedon E, Delorme C, Layec S, Khaci G, Van De Guchte M, Vandemeulebrouck G, Jamet A, Dervyn R, Sanchez N, MetaHIT consortium, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. doi: 10.1038/nature12506. - DOI - PubMed
-
- Schwingshackl L, Bogensberger B, Hoffmann G. 2018. Diet quality as assessed by the healthy eating index, alternate healthy eating index, dietary approaches to stop hypertension score, and health outcomes: an updated systematic review and meta-analysis of cohort studies. J Acad Nutr Diet 118:74–100.e11. doi: 10.1016/j.jand.2017.08.024. - DOI - PubMed
Publication types
MeSH terms
Associated data
LinkOut - more resources
Full Text Sources
Medical
Research Materials
