Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 1;136(5):732-748.
doi: 10.1097/ALN.0000000000004168.

Extracorporeal Membrane Oxygenation for Respiratory Failure Related to COVID-19: A Nationwide Cohort Study

Collaborators, Affiliations

Extracorporeal Membrane Oxygenation for Respiratory Failure Related to COVID-19: A Nationwide Cohort Study

Nicolas Nesseler et al. Anesthesiology. .

Abstract

Background: Despite expanding use, knowledge on extracorporeal membrane oxygenation support during the COVID-19 pandemic remains limited. The objective was to report characteristics, management, and outcomes of patients receiving extracorporeal membrane oxygenation with a diagnosis of COVID-19 in France and to identify pre-extracorporeal membrane oxygenation factors associated with in-hospital mortality. A hypothesis of similar mortality rates and risk factors for COVID-19 and non-COVID-19 patients on venovenous extracorporeal membrane oxygenation was made.

Methods: The Extracorporeal Membrane Oxygenation for Respiratory Failure and/or Heart failure related to Severe Acute Respiratory Syndrome-Coronavirus 2 (ECMOSARS) registry included COVID-19 patients supported by extracorporeal membrane oxygenation in France. This study analyzed patients included in this registry up to October 25, 2020, and supported by venovenous extracorporeal membrane oxygenation for respiratory failure with a minimum follow-up of 28 days after cannulation. The primary outcome was in-hospital mortality. Risk factors for in-hospital mortality were analyzed.

Results: Among 494 extracorporeal membrane oxygenation patients included in the registry, 429 were initially supported by venovenous extracorporeal membrane oxygenation and followed for at least 28 days. The median (interquartile range) age was 54 yr (46 to 60 yr), and 338 of 429 (79%) were men. Management before extracorporeal membrane oxygenation cannulation included prone positioning for 411 of 429 (96%), neuromuscular blockage for 419 of 427 (98%), and NO for 161 of 401 (40%). A total of 192 of 429 (45%) patients were cannulated by a mobile extracorporeal membrane oxygenation unit. In-hospital mortality was 219 of 429 (51%), with a median follow-up of 49 days (33 to 70 days). Among pre-extracorporeal membrane oxygenation modifiable exposure variables, neuromuscular blockage use (hazard ratio, 0.286; 95% CI, 0.101 to 0.81) and duration of ventilation (more than 7 days compared to less than 2 days; hazard ratio, 1.74; 95% CI, 1.07 to 2.83) were independently associated with in-hospital mortality. Both age (per 10-yr increase; hazard ratio, 1.27; 95% CI, 1.07 to 1.50) and total bilirubin at cannulation (6.0 mg/dl or more compared to less than 1.2 mg/dl; hazard ratio, 2.65; 95% CI, 1.09 to 6.5) were confounders significantly associated with in-hospital mortality.

Conclusions: In-hospital mortality was higher than recently reported, but nearly half of the patients survived. A high proportion of patients were cannulated by a mobile extracorporeal membrane oxygenation unit. Several factors associated with mortality were identified. Venovenous extracorporeal membrane oxygenation support should be considered early within the first week of mechanical ventilation initiation.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Flow chart of extracorporeal membrane oxygenation (ECMO) patients included in the study.

References

    1. Wiersinga WJ, Prescott HC: What is COVID-19? JAMA 2020; 324:816. - PubMed
    1. Patroniti N, Zangrillo A, Pappalardo F, Peris A, Cianchi G, Braschi A, Iotti GA, Arcadipane A, Panarello G, Ranieri VM, Terragni P, Antonelli M, Gattinoni L, Oleari F, Pesenti A: The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: Preparation for severe respiratory emergency outbreaks. Intensive Care Med 2011; 37:1447–57 - PMC - PubMed
    1. Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators ; Davies A, Jones D, Bailey M, Beca J, Bellomo R, Blackwell N, Forrest P, Gattas D, Granger E, Herkes R, Jackson A, McGuinness S, Nair P, Pellegrino V, Pettilä V, Plunkett B, Pye R, Torzillo P, Webb S, Wilson M, Ziegenfuss M. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 2009; 302:1888–95 - PubMed
    1. Noah MA, Peek GJ, Finney SJ, Griffiths MJ, Harrison DA, Grieve R, Sadique MZ, Sekhon JS, McAuley DF, Firmin RK, Harvey C, Cordingley JJ, Price S, Vuylsteke A, Jenkins DP, Noble DW, Bloomfield R, Walsh TS, Perkins GD, Menon D, Taylor BL, Rowan KM: Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011; 306:1659–68 - PubMed
    1. Pham T, Combes A, Rozé H, Chevret S, Mercat A, Roch A, Mourvillier B, Ara-Somohano C, Bastien O, Zogheib E, Clavel M, Constan A, Richard J-CM, Brun-Buisson C, Brochard L; REVA Research Network: Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)–induced acute respiratory distress syndrome. Am J Resp Crit Care 2013; 187:276–85 - PubMed

Publication types