Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul 5;50(W1):W663-W669.
doi: 10.1093/nar/gkac218.

RNAspider: a webserver to analyze entanglements in RNA 3D structures

Affiliations

RNAspider: a webserver to analyze entanglements in RNA 3D structures

Kamil Luwanski et al. Nucleic Acids Res. .

Abstract

Advances in experimental and computational techniques enable the exploration of large and complex RNA 3D structures. These, in turn, reveal previously unstudied properties and motifs not characteristic for small molecules with simple architectures. Examples include entanglements of structural elements in RNA molecules and knot-like folds discovered, among others, in the genomes of RNA viruses. Recently, we presented the first classification of entanglements, determined by their topology and the type of entangled structural elements. Here, we introduce RNAspider - a web server to automatically identify, classify, and visualize primary and higher-order entanglements in RNA tertiary structures. The program applies to evaluate RNA 3D models obtained experimentally or by computational prediction. It supports the analysis of uncommon topologies in the pseudoknotted RNA structures. RNAspider is implemented as a publicly available tool with a user-friendly interface and can be freely accessed at https://rnaspider.cs.put.poznan.pl/.

PubMed Disclaimer

Figures

Graphical Abstract
Graphical Abstract
RNAspider: a webserver to analyze entanglements in RNA 3D structures.
Figure 1.
Figure 1.
Classification of entanglements of structure elements shown on the example of entangled RNA hairpins: (A) interlaces and (B) lassos.
Figure 2.
Figure 2.
Single strand S punctures a closed element L (A) once, (B) twice or (C) three times, forming L(S), L(S.) or L(S..)-type entanglement.
Figure 3.
Figure 3.
Entanglement of type D(S) –dinucleotide step lassoing the single-stranded fragment – from RNAComposer-5UTR model shown as (A) a full-atom representation, (B) a simplified view from RNAspider and (C) a 2D structure with highlighted elements forming the entanglement.
Figure 4.
Figure 4.
Higher-order L(S) entanglement in a knot-like fold (PDB ID: 7K16) visualized by RNAspider in (A) full-atom and (B) simplified representation. The red bead indicates the point of puncturing the surface spanned on the loop by the polygonal chain of the 5′-end. The point of intersection falls between the C4′ atom of residue 2 and the P atom of residue 3 of the polygonal chain.

Similar articles

Cited by

  • Unknotting RNA: A method to resolve computational artifacts.
    Poblete S, Mlynarczyk M, Szachniuk M. Poblete S, et al. PLoS Comput Biol. 2025 Mar 20;21(3):e1012843. doi: 10.1371/journal.pcbi.1012843. eCollection 2025 Mar. PLoS Comput Biol. 2025. PMID: 40112280 Free PMC article.
  • Computational Pipeline for Reference-Free Comparative Analysis of RNA 3D Structures Applied to SARS-CoV-2 UTR Models.
    Gumna J, Antczak M, Adamiak RW, Bujnicki JM, Chen SJ, Ding F, Ghosh P, Li J, Mukherjee S, Nithin C, Pachulska-Wieczorek K, Ponce-Salvatierra A, Popenda M, Sarzynska J, Wirecki T, Zhang D, Zhang S, Zok T, Westhof E, Miao Z, Szachniuk M, Rybarczyk A. Gumna J, et al. Int J Mol Sci. 2022 Aug 25;23(17):9630. doi: 10.3390/ijms23179630. Int J Mol Sci. 2022. PMID: 36077037 Free PMC article.
  • Examples of Structural Motifs in Viral Genomes and Approaches for RNA Structure Characterization.
    Nalewaj M, Szabat M. Nalewaj M, et al. Int J Mol Sci. 2022 Dec 14;23(24):15917. doi: 10.3390/ijms232415917. Int J Mol Sci. 2022. PMID: 36555559 Free PMC article. Review.
  • RNA-Puzzles Round V: blind predictions of 23 RNA structures.
    Bu F, Adam Y, Adamiak RW, Antczak M, de Aquino BRH, Badepally NG, Batey RT, Baulin EF, Boinski P, Boniecki MJ, Bujnicki JM, Carpenter KA, Chacon J, Chen SJ, Chiu W, Cordero P, Das NK, Das R, Dawson WK, DiMaio F, Ding F, Dock-Bregeon AC, Dokholyan NV, Dror RO, Dunin-Horkawicz S, Eismann S, Ennifar E, Esmaeeli R, Farsani MA, Ferré-D'Amaré AR, Geniesse C, Ghanim GE, Guzman HV, Hood IV, Huang L, Jain DS, Jaryani F, Jin L, Joshi A, Karelina M, Kieft JS, Kladwang W, Kmiecik S, Koirala D, Kollmann M, Kretsch RC, Kurciński M, Li J, Li S, Magnus M, Masquida B, Moafinejad SN, Mondal A, Mukherjee S, Nguyen THD, Nikolaev G, Nithin C, Nye G, Pandaranadar Jeyeram IPN, Perez A, Pham P, Piccirilli JA, Pilla SP, Pluta R, Poblete S, Ponce-Salvatierra A, Popenda M, Popenda L, Pucci F, Rangan R, Ray A, Ren A, Sarzynska J, Sha CM, Stefaniak F, Su Z, Suddala KC, Szachniuk M, Townshend R, Trachman RJ 3rd, Wang J, Wang W, Watkins A, Wirecki TK, Xiao Y, Xiong P, Xiong Y, Yang J, Yesselman JD, Zhang J, Zhang Y, Zhang Z, Zhou Y, Zok T, Zhang D, Zhang S, Żyła A, Westhof E, Miao Z. Bu F, et al. Nat Methods. 2025 Feb;22(2):399-411. doi: 10.1038/s41592-024-02543-9. Epub 2024 Dec 2. Nat Methods. 2025. PMID: 39623050 Free PMC article.
  • Knotted artifacts in predicted 3D RNA structures.
    Gren BA, Antczak M, Zok T, Sulkowska JI, Szachniuk M. Gren BA, et al. PLoS Comput Biol. 2024 Jun 20;20(6):e1011959. doi: 10.1371/journal.pcbi.1011959. eCollection 2024 Jun. PLoS Comput Biol. 2024. PMID: 38900780 Free PMC article.

References

    1. Serganov A., Patel D.. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 2007; 8:776–90. - PMC - PubMed
    1. Jobe A., Liu Z., Gutierrez-Vargas C., Frank J.. New insights into ribosome structure and function. Cold Spring Harb. Perspect. Biol. 2018; 11:a032615. - PMC - PubMed
    1. Warner K., Hajdin C., Weeks K.. Principles for targeting RNA with Drug-like small molecules. Nat. Rev. Drug Discov. 2018; 17:547–558. - PMC - PubMed
    1. Juru A., Hargrove A.. Frameworks for targeting RNA with small molecules. J. Biol. Chem. 2021; 296:100191. - PMC - PubMed
    1. Giegé R., Jühling F., Pütz J., Stadler P., Sauter C., Florentz C.. Structure of transfer RNAs: similarity and variability. Wiley Interdiscip. Rev. RNA. 2011; 3:37–61. - PubMed

Publication types