Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May:272:153684.
doi: 10.1016/j.jplph.2022.153684. Epub 2022 Mar 23.

Genome-wide identification and characterization of high-affinity nitrate transporter 2 (NRT2) gene family in tomato (Solanum lycopersicum) and their transcriptional responses to drought and salinity stresses

Affiliations

Genome-wide identification and characterization of high-affinity nitrate transporter 2 (NRT2) gene family in tomato (Solanum lycopersicum) and their transcriptional responses to drought and salinity stresses

M Aydın Akbudak et al. J Plant Physiol. 2022 May.

Abstract

The high-affinity nitrate transporter 2 (NRT2) proteins play vital roles in both nitrate (NO3-) uptake and translocation in plants. Although the gene families coding the NRT2 proteins have been identified and functionally characterized in many plant species, the systematic identification of NRT2 gene family members has not previously been reported in tomato (Solanum lycopersicum). Moreover, little is known about their expression profiles in response to different environmental stresses. The present study sought to identify the NRT2 gene family members within the tomato genome, and then to characterize them in detail by means of bioinformatics, physiological and expression analyses. Four novel NRT2 genes were identified in the tomato genome, all of which contained the same domain belonging to the major facilitator superfamily (PF07690). The co-expression network of the SlNRT2 genes revealed that they were co-expressed with several other genes in a number of different molecular pathways, including the transport, photosynthesis, fatty acid metabolism and amino acid catabolism pathways. Several phosphorylation sites were predicted in the NRT2 proteins. The SlNRT2 genes interact with many other genes that perform various functions in many crucial pathways within the tomato genome. The sequence variations observed at the gene and protein levels indicate the dynamic regulation of the SlNRT2 gene family members in relation to cell metabolism, particularly with regard to the nitrogen assimilation pathway. The responses of the SlNRT2 genes to drought and salinity stresses are diverse, and they are neither stress- nor tissue-specific. The findings of this study should provide a useful scientific basis for future studies concerning the roles of the NRT2 gene family in plants.

Keywords: Drought; Gene family; NRT2; Salt stress; Tomato.

PubMed Disclaimer

LinkOut - more resources