Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1979 Feb 15;94(1):243-7.
doi: 10.1111/j.1432-1033.1979.tb12891.x.

Quaternary structure of higher plant glyceraldehyde-3-phosphate dehydrogenases

Free article
Comparative Study

Quaternary structure of higher plant glyceraldehyde-3-phosphate dehydrogenases

R Cerff. Eur J Biochem. .
Free article

Abstract

1. NAD(P)+-induced changes in the aggregational state of prepurified NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were used to isolate the enzyme from Spinacia oleracea, Pisum sativaum and Hordeum vulgare. Each of the three plant species contains two separate isoenzymes. Isoenzyme 1 (fast moving during conventional electrophoresis) precipitates with the ammonium sulfate fraction 55--70% saturation. It shows two separate subunits in dodecylsulfate gels, which are probably arranged as A2B2 in the native enzyme molecule. Isoenzyme 2 (slow moving during conventional electrophoresis) precipitates with the ammonium sulfate fraction 70--95%. It contains a sigle subunit of the same Mr as subunit A in isoenzyme 1 and is apparently a tetramer (A4). The molecular weights of subunits A/B for spinach, peas and barley were determined as 38,000/40,000, 38,000/42,000 and 36,000/39,000 respectively. 2. The NAD-specific glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) was purified from Spinacia oleracea and Pisum sativum by affinity chromatography on blue Sepharose CL-6B. The enzyme from both plant species is shown to be a tetramer of subunits with Mr 39,000. 3. The present findings contrast with heterogeneous results obtained previously by other authors. These results suggested that there are considerable interspecific differences in the quaternary structure of glyceraldehyde-3-phosphate dehydrogenases from higher plants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources