Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα
- PMID: 35353516
- PMCID: PMC9011356
- DOI: 10.1021/jacs.1c13568
Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα
Abstract
Covalent protein kinase inhibitors exploit currently noncatalytic cysteines in the adenosine 5'-triphosphate (ATP)-binding site via electrophiles directly appended to a reversible-inhibitor scaffold. Here, we delineate a path to target solvent-exposed cysteines at a distance >10 Å from an ATP-site-directed core module and produce potent covalent phosphoinositide 3-kinase α (PI3Kα) inhibitors. First, reactive warheads are used to reach out to Cys862 on PI3Kα, and second, enones are replaced with druglike warheads while linkers are optimized. The systematic investigation of intrinsic warhead reactivity (kchem), rate of covalent bond formation and proximity (kinact and reaction space volume Vr), and integration of structure data, kinetic and structural modeling, led to the guided identification of high-quality, covalent chemical probes. A novel stochastic approach provided direct access to the calculation of overall reaction rates as a function of kchem, kinact, Ki, and Vr, which was validated with compounds with varied linker lengths. X-ray crystallography, protein mass spectrometry (MS), and NanoBRET assays confirmed covalent bond formation of the acrylamide warhead and Cys862. In rat liver microsomes, compounds 19 and 22 outperformed the rapidly metabolized CNX-1351, the only known PI3Kα irreversible inhibitor. Washout experiments in cancer cell lines with mutated, constitutively activated PI3Kα showed a long-lasting inhibition of PI3Kα. In SKOV3 cells, compounds 19 and 22 revealed PI3Kβ-dependent signaling, which was sensitive to TGX221. Compounds 19 and 22 thus qualify as specific chemical probes to explore PI3Kα-selective signaling branches. The proposed approach is generally suited to develop covalent tools targeting distal, unexplored Cys residues in biologically active enzymes.
Conflict of interest statement
The authors declare no competing financial interest.
Figures







Similar articles
-
Rapid, potent, and persistent covalent chemical probes to deconvolute PI3Kα signaling.Chem Sci. 2024 Nov 12;15(48):20274-20291. doi: 10.1039/d4sc05459h. eCollection 2024 Dec 11. Chem Sci. 2024. PMID: 39568927 Free PMC article.
-
Discovery of a potent and isoform-selective targeted covalent inhibitor of the lipid kinase PI3Kα.J Med Chem. 2013 Feb 14;56(3):712-21. doi: 10.1021/jm3008745. Epub 2013 Feb 5. J Med Chem. 2013. PMID: 23360348
-
Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase α that are critical for catalysis and substrate recognition.J Biol Chem. 2017 Aug 18;292(33):13541-13550. doi: 10.1074/jbc.M116.772426. Epub 2017 Jul 4. J Biol Chem. 2017. PMID: 28676499 Free PMC article.
-
Orally effective FDA-approved protein kinase targeted covalent inhibitors (TCIs).Pharmacol Res. 2021 Mar;165:105422. doi: 10.1016/j.phrs.2021.105422. Epub 2021 Jan 9. Pharmacol Res. 2021. PMID: 33434619 Review.
-
Discovery of Cysteine-targeting Covalent Protein Kinase Inhibitors.J Med Chem. 2022 Jan 13;65(1):58-83. doi: 10.1021/acs.jmedchem.1c01719. Epub 2021 Dec 28. J Med Chem. 2022. PMID: 34962782 Review.
Cited by
-
Rapid, potent, and persistent covalent chemical probes to deconvolute PI3Kα signaling.Chem Sci. 2024 Nov 12;15(48):20274-20291. doi: 10.1039/d4sc05459h. eCollection 2024 Dec 11. Chem Sci. 2024. PMID: 39568927 Free PMC article.
-
Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery.Biosensors (Basel). 2024 Nov 24;14(12):570. doi: 10.3390/bios14120570. Biosensors (Basel). 2024. PMID: 39727835 Free PMC article. Review.
-
Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes.J Med Chem. 2023 Jul 27;66(14):9297-9312. doi: 10.1021/acs.jmedchem.3c00550. Epub 2023 Jul 5. J Med Chem. 2023. PMID: 37403870 Free PMC article. Review.
-
Rhenium(V) Complexes as Cysteine-Targeting Coordinate Covalent Warheads.J Med Chem. 2023 Feb 23;66(4):3088-3105. doi: 10.1021/acs.jmedchem.2c02074. Epub 2023 Feb 8. J Med Chem. 2023. PMID: 36752718 Free PMC article.
-
Expanding the ligandable proteome by paralog hopping with covalent probes.bioRxiv [Preprint]. 2024 Jan 19:2024.01.18.576274. doi: 10.1101/2024.01.18.576274. bioRxiv. 2024. PMID: 38293178 Free PMC article. Preprint.
References
-
- Miller V. A.; Hirsh V.; Cadranel J.; Chen Y.-M.; Park K.; Kim S.-W.; Zhou C.; Su W.-C.; Wang M.; Sun Y.; Heo D. S.; Crino L.; Tan E.-H.; Chao T.-Y.; Shahidi M.; Cong X. J.; Lorence R. M.; Yang J. C.-H. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 2012, 13, 528–538. 10.1016/S1470-2045(12)70087-6. - DOI - PubMed
-
- Pan Z.; Scheerens H.; Li S.-J.; Schultz B. E.; Sprengeler P. A.; Burrill L. C.; Mendonca R. V.; Sweeney M. D.; Scott K. C. K.; Grothaus P. G.; Jeffery D. A.; Spoerke J. M.; Honigberg L. A.; Young P. R.; Dalrymple S. A.; Palmer J. T. Discovery of Selective Irreversible Inhibitors for Bruton’s Tyrosine Kinase. ChemMedChem 2007, 2, 58–61. 10.1002/cmdc.200600221. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources