Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2022 May;32(5):417-418.
doi: 10.1038/s41422-022-00653-7.

Cuproptosis: a copper-triggered modality of mitochondrial cell death

Affiliations
Comment

Cuproptosis: a copper-triggered modality of mitochondrial cell death

Daolin Tang et al. Cell Res. 2022 May.
No abstract available

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Signaling and mechanism of cuproptosis.
Elesclomol binds copper (Cu2+) in the extracellular environment and transports it to intracellular compartments. Increased Cu accumulation causes cuproptosis mainly through FDX1-mediated mitochondrial proteotoxic stress. On the one hand, FDX1 reduces Cu2+ to Cu+, facilitating the lipoylation (LA) and aggregation of enzymes (especially DLAT) involved in the regulation of mitochondrial TCA cycle. On the other hand, FDX1 causes the destabilization of Fe–S cluster proteins. In addition to Cu ionophores, Cu importers (e.g., SLC31A1) and exporters (e.g., ATP7B) regulate cuproptosis sensitivity by affecting intracellular Cu+ levels. GSH functions as a thiol-containing copper chelator that blocks cuproptosis, whereas BSO promotes cuproptosis by depleting GSH. The mitochondrial pyruvate carrier (MPC) inhibitor UK5099 and electron transport chain (ETC) complex I/III inhibitors (e.g., rotenone and antimycin A) attenuate elesclomol-induced cuproptosis.

Comment on

  • Copper induces cell death by targeting lipoylated TCA cycle proteins.
    Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR. Tsvetkov P, et al. Science. 2022 Mar 18;375(6586):1254-1261. doi: 10.1126/science.abf0529. Epub 2022 Mar 17. Science. 2022. PMID: 35298263 Free PMC article.

References

    1. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. Cell Res. 2019;29:347–364. doi: 10.1038/s41422-019-0164-5. - DOI - PMC - PubMed
    1. Chen X, Kang R, Kroemer G, Tang D, et al. Nat. Rev. Clin. Oncol. 2021;18:280–296. doi: 10.1038/s41571-020-00462-0. - DOI - PubMed
    1. Tsvetkov P, et al. Science. 2022;375:1254–1261. doi: 10.1126/science.abf0529. - DOI - PMC - PubMed
    1. Song X, et al. Cell Rep. 2021;34:108767. doi: 10.1016/j.celrep.2021.108767. - DOI - PubMed
    1. Lee H, et al. Nat. Cell Biol. 2020;22:225–234. doi: 10.1038/s41556-020-0461-8. - DOI - PMC - PubMed