Xylitol production by Pseudomonas gessardii VXlt-16 from sugarcane bagasse hydrolysate and cost analysis
- PMID: 35355104
- DOI: 10.1007/s00449-022-02721-z
Xylitol production by Pseudomonas gessardii VXlt-16 from sugarcane bagasse hydrolysate and cost analysis
Abstract
Xylitol is a well-known sugar alcohol with exponentially rising market demand due to its diverse industrial applications. Organic agro-industrial residues (OAIR) are economic alternative for the cost-effective production of commodity products along with addressing environmental pollution. The present study aimed to design a process for xylitol production from OAIR via microbial fermentation with Pseudomonas gessardii VXlt-16. Parametric analysis with Taguchi orthogonal array approach resulted in a conversion factor of 0.64 g xylitol/g xylose available in untreated sugarcane bagasse hydrolysate (SBH). At bench scale, the product yield increased to 71.98/100 g (0.66 g/L h). 48.49 g of xylitol crystals of high purity (94.56%) were recovered after detoxification with 2% activated carbon. Cost analysis identified downstream operations as one of the cost-intensive parts that can be countered by adsorbent recycling. Spent carbon, regenerated with acetic acid washing can be reused for six cycles effectively and reduced downstream cost by about ≈32%. The strategy would become useful in the cost-effective production of several biomass-dependent products like proteins, enzymes, organic acids, as well.
Keywords: Adsorbent recycling; Cost analysis; Pseudomonas gessardii; Xylitol.
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Similar articles
-
Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain.Yeast. 2019 May;36(5):349-361. doi: 10.1002/yea.3394. Yeast. 2019. PMID: 30997699
-
Sugarcane bagasse as raw material and immobilization support for xylitol production.Appl Biochem Biotechnol. 2005 Spring;121-124:673-83. doi: 10.1385/abab:122:1-3:0673. Appl Biochem Biotechnol. 2005. PMID: 15920271
-
High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates.Bioresour Technol. 2021 Dec;342:126005. doi: 10.1016/j.biortech.2021.126005. Epub 2021 Sep 22. Bioresour Technol. 2021. PMID: 34592613 Free PMC article.
-
Bioconversion of lignocellulosic biomass to xylitol: An overview.Bioresour Technol. 2016 Aug;213:299-310. doi: 10.1016/j.biortech.2016.04.092. Epub 2016 Apr 21. Bioresour Technol. 2016. PMID: 27142629 Review.
-
Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries.Crit Rev Biotechnol. 2019 Nov;39(7):924-943. doi: 10.1080/07388551.2019.1640658. Epub 2019 Jul 16. Crit Rev Biotechnol. 2019. PMID: 31311338 Review.
Cited by
-
Food-grade xylitol production from corncob biomass with acute oral toxicity studies.World J Microbiol Biotechnol. 2023 Feb 17;39(4):102. doi: 10.1007/s11274-023-03542-2. World J Microbiol Biotechnol. 2023. PMID: 36797527
-
Biological production of xylitol by using nonconventional microbial strains.World J Microbiol Biotechnol. 2022 Oct 28;38(12):249. doi: 10.1007/s11274-022-03437-8. World J Microbiol Biotechnol. 2022. PMID: 36306036 Review.
-
Detoxification Approaches of Bagasse Pith Hydrolysate Affecting Xylitol Production by Rhodotorula mucilaginosa.Appl Biochem Biotechnol. 2024 Jan;196(1):129-144. doi: 10.1007/s12010-023-04539-1. Epub 2023 Apr 27. Appl Biochem Biotechnol. 2024. PMID: 37103733
-
Meyerozyma caribbica Isolated from Vinasse-Irrigated Sugarcane Plantation Soil: A Promising Yeast for Ethanol and Xylitol Production in Biorefineries.J Fungi (Basel). 2023 Jul 26;9(8):789. doi: 10.3390/jof9080789. J Fungi (Basel). 2023. PMID: 37623560 Free PMC article.
-
Phytoremediation: Sustainable Approach for Heavy Metal Pollution.Scientifica (Cairo). 2024 Oct 12;2024:3909400. doi: 10.1155/2024/3909400. eCollection 2024. Scientifica (Cairo). 2024. PMID: 39430119 Free PMC article. Review.
References
-
- Ahuja V, Macho M, Ewe D et al (2020) Biological and pharmacological potential of xylitol: a molecular insight of unique metabolism. Foods 9:1592. https://doi.org/10.3390/foods9111592 - DOI - PMC
-
- Kaliyan B, Ameer K, Agastian P (2016) Optimization of parameters to increase the xylose reductase production from Candida tropicalis strain LY15 using corn cob as hemicellulose waste substrates. Afr J Microbiol Res 10:1908–1917. https://doi.org/10.5897/ajmr2016.8330 - DOI
-
- Mäkinen KK (2000) The rocky road of xylitol to its clinical application. J Dent Res 79:1352–1355. https://doi.org/10.1177/00220345000790060101 - DOI - PubMed
-
- Akpe SG, Choi SH, Ham HC (2021) Conversion of cyclic xylose into xylitol on Ru, Pt, Pd, Ni, and Rh catalysts: a density functional theory study. Phys Chem Chem Phys 23:26195–26208. https://doi.org/10.1039/D1CP04660H - DOI - PubMed
-
- Arifan F, Nuswantari S (2020) The xylitol production efficiency from corn cob waste by using stirred tank bioreactor-tubular loop liquid emulsion membrane (LEM). IOP Conf Ser Earth Environ Sci 448:012023. https://doi.org/10.1088/1755-1315/448/1/012023 - DOI
MeSH terms
Substances
Supplementary concepts
LinkOut - more resources
Full Text Sources
Other Literature Sources