A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor
- PMID: 35355134
- DOI: 10.1007/s00604-022-05275-9
A solid-state electrochemiluminescence aptasensor for β-lactoglobulin using Ru-AuNP/GNP/Naf nanocomposite-modified printed sensor
Abstract
An electrochemiluminescence (ECL) aptasensor for the detection of the milk protein allergen β-lactoglobulin (β-LG) using nanocomposite as luminophore was fabricated. The Ru-AuNPs/GNP/Naf complex was formed by combining the Rubpy32+-AuNPs complex (Ru-AuNPs), prepared by modifying the negatively charged surface of gold nanoparticles (AuNPs) with positively charged Rubpy32+ through electrostatic interactions and the graphene nanoplatelets-Nafion (GNP/Naf) at a ratio of 2:1. The nanocomposite was coated on the surface of the screen-printed electrode (SPCE) through the film-forming properties of Nafion. A layer of chitosan (CS) was coated onto this modified electrode, and later amine-terminated β-LG aptamers were covalently attached to the CS/Ru-AuNP/GNP/Naf via glutaraldehyde (GLUT) cross-linking. When β-LG was incubated with the aptasensor, a subsequent decrease in ECL intensity was recorded. Under the optimal conditions, the ECL intensity of the aptasensor changed linearly with the logarithmic concentration of β-LG, in the range 0.1 to 1000 pg/ml, and the detection limit was 0.02 pg/mL (3σ/m). The constructed aptasensor displayed simple and fast determination of β-LG with excellent reproducibility, stability, and high specificity. Additionally, the proposed ECL aptasensor displayed high recoveries (92.5-112%) and low coefficients of variation (1.6-7.8%), when β-LG fortified samples were analyzed. Integrating Ru-AuNPs/GNP/Naf nanocomposite in the ECL aptasensor paves the way towards a cost-effective and sensitive detection of the milk allergen β-LG.
Keywords: AuNP; Graphene nanoplatelets; Label-free ECL aptasensor; Milk protein; Rubpy3 2+; β-Lactoglobulin (β-LG).
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Similar articles
-
Label-Free Electrochemiluminescence Nano-aptasensor for the Ultrasensitive Detection of ApoA1 in Human Serum.ACS Omega. 2022 Oct 20;7(43):38709-38716. doi: 10.1021/acsomega.2c04300. eCollection 2022 Nov 1. ACS Omega. 2022. PMID: 36340071 Free PMC article.
-
An electrochemical aptasensor for the milk allergen β-lactoglobulin detection based on a target-induced nicking site reconstruction strategy.Analyst. 2021 Nov 8;146(22):6808-6814. doi: 10.1039/d1an01483h. Analyst. 2021. PMID: 34647930
-
An "on-off-on" electrochemiluminescence aptasensor based on a self-enhanced luminophore for ochratoxin A detection.Anal Bioanal Chem. 2023 Sep;415(23):5833-5844. doi: 10.1007/s00216-023-04864-8. Epub 2023 Jul 21. Anal Bioanal Chem. 2023. PMID: 37477648
-
Core-Satellite Gold Nanoparticle@Silver Nanocluster Nanohybrids for Milk Allergen β-Lactoglobulin Detection Using the Electrochemical Aptasensor.J Agric Food Chem. 2025 Feb 5;73(5):3194-3203. doi: 10.1021/acs.jafc.4c08948. Epub 2025 Jan 27. J Agric Food Chem. 2025. PMID: 39869095
-
Ru(bpy)32+-Silica@Poly-L-lysine-Au as labels for electrochemiluminescence lysozyme aptasensor based on 3D graphene.Biosens Bioelectron. 2018 May 30;106:50-56. doi: 10.1016/j.bios.2018.01.059. Epub 2018 Jan 31. Biosens Bioelectron. 2018. PMID: 29414088
Cited by
-
An electrochemical aptasensor based on AuNRs/AuNWs for sensitive detection of apolipoprotein A-1 (ApoA1) from human serum.RSC Adv. 2023 Jan 26;13(6):3890-3898. doi: 10.1039/d2ra06600a. eCollection 2023 Jan 24. RSC Adv. 2023. PMID: 36756582 Free PMC article.
-
Nanozyme-based sensors for detection of food biomarkers: a review.RSC Adv. 2022 Sep 15;12(40):26160-26175. doi: 10.1039/d2ra04444g. eCollection 2022 Sep 12. RSC Adv. 2022. PMID: 36275095 Free PMC article. Review.
-
Label-Free Electrochemiluminescence Nano-aptasensor for the Ultrasensitive Detection of ApoA1 in Human Serum.ACS Omega. 2022 Oct 20;7(43):38709-38716. doi: 10.1021/acsomega.2c04300. eCollection 2022 Nov 1. ACS Omega. 2022. PMID: 36340071 Free PMC article.
References
-
- Tordesillas L, Berin MC, Sampson HA (2017) Immunology of food allergy. Immunity 47:32–50. https://doi.org/10.1016/j.immuni.2017.07.004 - DOI - PubMed
-
- Amor-Gutiérrez O, Selvolini G, Fernández-Abedul MT et al (2020) Folding-based electrochemical aptasensor for the determination of β-lactoglobulin on poly-L-lysine modified graphite electrodes. Sensors 20:2349. https://doi.org/10.3390/s20082349 - DOI - PMC
-
- Nehra M, Lettieri M, Dilbaghi N et al (2019) Nano-biosensing platforms for detection of cow’s milk allergens: an overview. Sensors 20:32. https://doi.org/10.3390/s20010032 - DOI - PMC
-
- He S, Li X, Wu Y et al (2018) Highly sensitive detection of bovine β-lactoglobulin with wide linear dynamic range based on platinum nanoparticles probe. J Agric Food Chem 66:11830–11838. https://doi.org/10.1021/acs.jafc.8b04086 - DOI - PubMed
-
- Ivens KO, Baumert JL, Taylor SL (2016) Commercial milk enzyme-linked immunosorbent assay (ELISA) kit reactivities to purified milk proteins and milk-derived ingredients. J Food Sci 81:T1871–T1878. https://doi.org/10.1111/1750-3841.13357 - DOI - PubMed