Scalable and automated CRISPR-based strain engineering using droplet microfluidics
- PMID: 35359611
- PMCID: PMC8924257
- DOI: 10.1038/s41378-022-00357-3
Scalable and automated CRISPR-based strain engineering using droplet microfluidics
Abstract
We present a droplet-based microfluidic system that enables CRISPR-based gene editing and high-throughput screening on a chip. The microfluidic device contains a 10 × 10 element array, and each element contains sets of electrodes for two electric field-actuated operations: electrowetting for merging droplets to mix reagents and electroporation for transformation. This device can perform up to 100 genetic modification reactions in parallel, providing a scalable platform for generating the large number of engineered strains required for the combinatorial optimization of genetic pathways and predictable bioengineering. We demonstrate the system's capabilities through the CRISPR-based engineering of two test cases: (1) disruption of the function of the enzyme galactokinase (galK) in E. coli and (2) targeted engineering of the glutamine synthetase gene (glnA) and the blue-pigment synthetase gene (bpsA) to improve indigoidine production in E. coli.
Keywords: Engineering; Microfluidics.
© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022.
Conflict of interest statement
Conflict of interestN.J.H. declares financial interests in TeselaGen Biotechnologies and Ansa Biotechnologies.
Figures




Similar articles
-
Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.ACS Synth Biol. 2017 Sep 15;6(9):1701-1709. doi: 10.1021/acssynbio.7b00007. Epub 2017 Jun 7. ACS Synth Biol. 2017. PMID: 28569062
-
Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.Lab Chip. 2021 Jan 21;21(2):284-295. doi: 10.1039/d0lc00994f. Epub 2021 Jan 13. Lab Chip. 2021. PMID: 33439205
-
A programmable and automated optical electrowetting-on-dielectric (oEWOD) driven platform for massively parallel and sequential processing of single cell assay operations.Lab Chip. 2024 Aug 6;24(16):3763-3774. doi: 10.1039/d4lc00245h. Lab Chip. 2024. PMID: 39037291
-
Controlled droplet microfluidic systems for multistep chemical and biological assays.Chem Soc Rev. 2017 Oct 16;46(20):6210-6226. doi: 10.1039/c5cs00717h. Chem Soc Rev. 2017. PMID: 28858351 Review.
-
Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering.Micromachines (Basel). 2019 Oct 29;10(11):734. doi: 10.3390/mi10110734. Micromachines (Basel). 2019. PMID: 31671786 Free PMC article. Review.
Cited by
-
Unveiling the state of the art: a systematic review and meta-analysis of paper-based microfluidic devices.Front Bioeng Biotechnol. 2024 Aug 21;12:1421831. doi: 10.3389/fbioe.2024.1421831. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 39234268 Free PMC article.
-
DNA storage: The future direction for medical cold data storage.Synth Syst Biotechnol. 2025 Mar 14;10(2):677-695. doi: 10.1016/j.synbio.2025.03.006. eCollection 2025 Jun. Synth Syst Biotechnol. 2025. PMID: 40235856 Free PMC article. Review.
-
Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens.J Zhejiang Univ Sci B. 2022 Nov 15;23(11):881-898. doi: 10.1631/jzus.B2200068. J Zhejiang Univ Sci B. 2022. PMID: 36379609 Free PMC article. Review.
-
Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies.Adv Healthc Mater. 2023 Jul;12(18):e2202936. doi: 10.1002/adhm.202202936. Epub 2023 Mar 20. Adv Healthc Mater. 2023. PMID: 36898671 Free PMC article. Review.
-
An outlook on the current challenges and opportunities in DNA data storage.Biotechnol Adv. 2023 Sep;66:108155. doi: 10.1016/j.biotechadv.2023.108155. Epub 2023 Apr 15. Biotechnol Adv. 2023. PMID: 37068530 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources
Miscellaneous