Mathematical models to study the biology of pathogens and the infectious diseases they cause
- PMID: 35359802
- PMCID: PMC8961237
- DOI: 10.1016/j.isci.2022.104079
Mathematical models to study the biology of pathogens and the infectious diseases they cause
Abstract
Mathematical models have many applications in infectious diseases: epidemiologists use them to forecast outbreaks and design containment strategies; systems biologists use them to study complex processes sustaining pathogens, from the metabolic networks empowering microbial cells to ecological networks in the microbiome that protects its host. Here, we (1) review important models relevant to infectious diseases, (2) draw parallels among models ranging widely in scale. We end by discussing a minimal set of information for a model to promote its use by others and to enable predictions that help us better fight pathogens and the diseases they cause.
Keywords: Computer modeling; Infection control in health technology; Microbiology.
© 2022 The Author(s).
Figures





Similar articles
-
Adjusting for age improves identification of gut microbiome alterations in multiple diseases.Elife. 2020 Mar 11;9:e50240. doi: 10.7554/eLife.50240. Elife. 2020. PMID: 32159510 Free PMC article.
-
Genome-Scale Metabolic Modeling for Unraveling Molecular Mechanisms of High Threat Pathogens.Front Cell Dev Biol. 2020 Nov 3;8:566702. doi: 10.3389/fcell.2020.566702. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 33251208 Free PMC article. Review.
-
An adaptive drug delivery design using neural networks for effective treatment of infectious diseases: a simulation study.Comput Methods Programs Biomed. 2009 Jun;94(3):207-22. doi: 10.1016/j.cmpb.2008.12.010. Epub 2009 Feb 11. Comput Methods Programs Biomed. 2009. PMID: 19215995
-
Mathematical modeling of infectious disease dynamics.Virulence. 2013 May 15;4(4):295-306. doi: 10.4161/viru.24041. Epub 2013 Apr 3. Virulence. 2013. PMID: 23552814 Free PMC article. Review.
-
PlantSimLab - a modeling and simulation web tool for plant biologists.BMC Bioinformatics. 2019 Oct 21;20(1):508. doi: 10.1186/s12859-019-3094-9. BMC Bioinformatics. 2019. PMID: 31638901 Free PMC article.
Cited by
-
Tensor-based insights into systems immunity and infectious disease.Trends Immunol. 2023 May;44(5):329-332. doi: 10.1016/j.it.2023.03.003. Epub 2023 Mar 29. Trends Immunol. 2023. PMID: 36997459 Free PMC article.
-
Surveying membrane landscapes: a new look at the bacterial cell surface.Nat Rev Microbiol. 2023 Aug;21(8):502-518. doi: 10.1038/s41579-023-00862-w. Epub 2023 Feb 24. Nat Rev Microbiol. 2023. PMID: 36828896 Review.
-
Optimal intervention design for tonsillitis transmission via compartmental modeling with stability analysis and control strategies.Sci Rep. 2025 Jul 30;15(1):27737. doi: 10.1038/s41598-025-13287-7. Sci Rep. 2025. PMID: 40731047 Free PMC article.
-
Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions.Microb Ecol. 2024 Apr 8;87(1):56. doi: 10.1007/s00248-024-02370-7. Microb Ecol. 2024. PMID: 38587642 Free PMC article. Review.
-
Recent Progress in Spectroscopic Methods for the Detection of Foodborne Pathogenic Bacteria.Biosensors (Basel). 2022 Oct 13;12(10):869. doi: 10.3390/bios12100869. Biosensors (Basel). 2022. PMID: 36291007 Free PMC article. Review.
References
-
- Arrieta-Ortiz M.L., Hafemeister C., Bate A.R., Chu T., Greenfield A., Shuster B., Barry S.N., Gallitto M., Liu B., Kacmarczyk T., et al. An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network. Mol. Syst. Biol. 2015;11:839. doi: 10.15252/msb.20156236. - DOI - PMC - PubMed
-
- Arrieta-Ortiz M.L., Immanuel S.R.C., Turkarslan S., Wu W.J., Girinathan B.P., Worley J.N., DiBenedetto N., Soutourina O., Peltier J., Dupuy B., et al. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile. Cell Host Microbe. 2021 doi: 10.1016/j.chom.2021.09.008. - DOI - PMC - PubMed