Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jul;101(8):921-930.
doi: 10.1177/00220345221085192. Epub 2022 Mar 31.

Mucoadhesive Nucleoside-Based Hydrogel Delays Oral Leukoplakia Canceration

Affiliations

Mucoadhesive Nucleoside-Based Hydrogel Delays Oral Leukoplakia Canceration

T Ding et al. J Dent Res. 2022 Jul.

Abstract

Some oral squamous cell carcinomas (OSCCs) originate from preexisting oral potentially malignant disorders (OPMDs). Oral leukoplakia (OLK) is the most common and typical OPMD in the clinic, so treatment for it is essential to reduce OSCC incidence. Local chemotherapy is an option other than surgery considering the superficial site of OLK. However, there are no standardized drugs applied to OLK, and traditionally used chemotherapeutic drugs revealed limited efficacy for lack of adhesion. Hence, there is a growing demand to prepare new agents that combine mucoadhesion with an anti-OLK effect. Here, an isoguanosine-tannic acid (isoG-TA) supramolecular hydrogel via dynamic borate esters was successfully fabricated based on isoG and TA. Previously reported guanosine-TA (G-TA) hydrogel was also explored for an anti-OLK effect. Both gels not only exhibited ideal adhesive properties but also integrated anti-OLK activities in one system. In vitro cell viability indicated that isoG and TA inhibited the proliferation of dysplastic oral keratinocytes (DOKs). The in vivo OLK model evidence revealed that both gels showed potential to prevent OLK canceration. In addition, the probable anti-DOK mechanisms of isoG and TA were investigated. The results indicated that isoG could bind to adenosine kinase (ADK) and then affected the mammalian target of rapamycin (mTOR) pathway to inhibit DOK proliferation. TA could significantly and continuously reduce reactive oxygen species (ROS) in DOKs through its antioxidant effect. ROS plays an important role in the progression of cell cycle. We proved that the low level of ROS may inhibit DOK proliferation by inducing G0/G1 arrest in the cell cycle. Altogether, this study innovatively fabricated an isoG-TA hydrogel with ideal adhesion, and both isoG and TA showed in vitro inhibition of DOKs. Moreover, both isoG-TA and G-TA hydrogels possessed potential in delaying the malignant transformation of OLK, and the G-TA hydrogel showed a better statistical effect, providing an effective strategy for controlling OLK.

Keywords: adenosine kinase (ADK); adhesion; anti-OLK; antioxidant; malignant transformation; supramolecular.

PubMed Disclaimer

Publication types

LinkOut - more resources