Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar;76(3):497-510.
doi: 10.1177/17470218221094572. Epub 2022 May 19.

Bayesian approximations to the theory of visual attention (TVA) in a foraging task

Affiliations

Bayesian approximations to the theory of visual attention (TVA) in a foraging task

Sofia Tkhan Tin Le et al. Q J Exp Psychol (Hove). 2023 Mar.

Abstract

Foraging as a natural visual search for multiple targets has increasingly been studied in humans in recent years. Here, we aimed to model the differences in foraging strategies between feature and conjunction foraging tasks found by Á. Kristjánsson et al. Bundesen proposed the theory of visual attention (TVA) as a computational model of attentional function that divides the selection process into filtering and pigeonholing. The theory describes a mechanism by which the strength of sensory evidence serves to categorise elements. We combined these ideas to train augmented Naïve Bayesian classifiers using data from Á. Kristjánsson et al. as input. Specifically, we attempted to answer whether it is possible to predict how frequently observers switch between different target types during consecutive selections (switches) during feature and conjunction foraging using Bayesian classifiers. We formulated 11 new parameters that represent key sensory and bias information that could be used for each selection during the foraging task and tested them with multiple Bayesian models. Separate Bayesian networks were trained on feature and conjunction foraging data, and parameters that had no impact on the model's predictability were pruned away. We report high accuracy for switch prediction in both tasks from the classifiers, although the model for conjunction foraging was more accurate. We also report our Bayesian parameters in terms of their theoretical associations with TVA parameters, πj (denoting the pertinence value), and βi (denoting the decision-making bias).

Keywords: Bayesian classifier; TVA; Visual attention; attentional switching; foraging.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources