Environment-Dependent Stability and Mechanical Properties of DNA Origami Six-Helix Bundles with Different Crossover Spacings
- PMID: 35363419
- DOI: 10.1002/smll.202107393
Environment-Dependent Stability and Mechanical Properties of DNA Origami Six-Helix Bundles with Different Crossover Spacings
Abstract
The internal design of DNA nanostructures defines how they behave in different environmental conditions, such as endonuclease-rich or low-Mg2+ solutions. Notably, the inter-helical crossovers that form the core of such DNA objects have a major impact on their mechanical properties and stability. Importantly, crossover design can be used to optimize DNA nanostructures for target applications, especially when developing them for biomedical environments. To elucidate this, two otherwise identical DNA origami designs are presented that have a different number of staple crossovers between neighboring helices, spaced at 42- and 21- basepair (bp) intervals, respectively. The behavior of these structures is then compared in various buffer conditions, as well as when they are exposed to enzymatic digestion by DNase I. The results show that an increased number of crossovers significantly improves the nuclease resistance of the DNA origami by making it less accessible to digestion enzymes but simultaneously lowers its stability under Mg2+ -free conditions by reducing the malleability of the structures. Therefore, these results represent an important step toward rational, application-specific DNA nanostructure design.
Keywords: DNA nanotechnology; endonucleases; magnesium; persistence length; stability.
© 2022 The Authors. Small published by Wiley-VCH GmbH.
Similar articles
-
Rhombic-Shaped Nanostructures and Mechanical Properties of 2D DNA Origami Constructed with Different Crossover/Nick Designs.Small. 2018 Jan;14(1). doi: 10.1002/smll.201702028. Epub 2017 Nov 13. Small. 2018. PMID: 29131541
-
Structural stability of wireframe DNA origami: The role of nanocomponent modifications.J Chem Phys. 2025 Apr 21;162(15):155101. doi: 10.1063/5.0259385. J Chem Phys. 2025. PMID: 40231877
-
On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9470-9474. doi: 10.1002/anie.201802890. Epub 2018 Jun 19. Angew Chem Int Ed Engl. 2018. PMID: 29799663
-
Overview of DNA origami for molecular self-assembly.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Mar-Apr;5(2):150-62. doi: 10.1002/wnan.1204. Epub 2013 Jan 17. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013. PMID: 23335504 Review.
-
Recent progress in DNA origami technology.Curr Protoc Nucleic Acid Chem. 2011 Jun;Chapter 12:Unit12.8. doi: 10.1002/0471142700.nc1208s45. Curr Protoc Nucleic Acid Chem. 2011. PMID: 21638269 Review.
Cited by
-
DNA-origami-directed virus capsid polymorphism.Nat Nanotechnol. 2023 Oct;18(10):1205-1212. doi: 10.1038/s41565-023-01443-x. Epub 2023 Jul 17. Nat Nanotechnol. 2023. PMID: 37460794 Free PMC article.
-
Controlling Nuclease Degradation of Wireframe DNA Origami with Minor Groove Binders.ACS Nano. 2022 Jun 28;16(6):8954-8966. doi: 10.1021/acsnano.1c11575. Epub 2022 May 31. ACS Nano. 2022. PMID: 35640255 Free PMC article.
-
Structural stability of DNA origami nanostructures in organic solvents.Nanoscale. 2024 Jul 18;16(28):13407-13415. doi: 10.1039/d4nr02185a. Nanoscale. 2024. PMID: 38910453 Free PMC article.
-
Advancing the Utility of DNA Origami Technique through Enhanced Stability of DNA-Origami-Based Assemblies.Bioconjug Chem. 2023 Jan 18;34(1):6-17. doi: 10.1021/acs.bioconjchem.2c00311. Epub 2022 Aug 19. Bioconjug Chem. 2023. PMID: 35984467 Free PMC article. Review.
-
Improving DNA nanostructure stability: A review of the biomedical applications and approaches.Int J Biol Macromol. 2024 Mar;260(Pt 1):129495. doi: 10.1016/j.ijbiomac.2024.129495. Epub 2024 Jan 14. Int J Biol Macromol. 2024. PMID: 38228209 Free PMC article. Review.
References
-
- N. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2018, 3, 17068.
-
- S. Nummelin, J. Kommeri, M. A. Kostiainen, V. Linko, Adv. Mater. 2018, 30, 1703721.
-
- P. W. K. Rothemund, Nature 2006, 440, 297.
-
- S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W. M. Shih, Nature 2009, 459, 414.
-
- C. E. Castro, F. Kilchherr, D.-N. Kim, E. L. Shiao, T. Wauer, P. Wortmann, M. Bathe, H. Dietz, Nat. Methods 2011, 8, 221.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources