Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 14;65(7):5800-5820.
doi: 10.1021/acs.jmedchem.2c00134. Epub 2022 Apr 1.

Design, Synthesis, and Proof-of-Concept of Triple-Site Inhibitors against Aminoacyl-tRNA Synthetases

Affiliations

Design, Synthesis, and Proof-of-Concept of Triple-Site Inhibitors against Aminoacyl-tRNA Synthetases

Zhengjun Cai et al. J Med Chem. .

Abstract

Aminoacyl-tRNA synthetases (aaRSs) are promising drug targets due to their essential roles in protein translation. Although current inhibitors primarily occupy one or two of the three substrate binding sites on aaRSs, we report here the structure-based design of the first class of triple-site aaRS inhibitors by targeting Salmonella enterica threonyl-tRNA synthetase (SeThrRS). Competition of our compounds with all three substrates on SeThrRS binding was confirmed via isothermal titration calorimetry assays. Cocrystal structures of three compounds bound to SeThrRS unambiguously confirmed their substrate-mimicking triple-site binding mode. Compound 36j exhibited the best enzyme activity against SeThrRS with IC50 = 19 nM and Kd = 35.4 nM. Compounds 36b, 36k, and 36l exhibited antibacterial activities with minimum inhibitory concentration values of 2-8 μg/mL against the tested bacteria, which are superior to those of the reported dual-site ThrRS inhibitors. Our study provides the first proof-of-concept for developing triple-site inhibitors against aaRSs, inspiring future aaRS-based drug discoveries.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources