PyToxo: a Python tool for calculating penetrance tables of high-order epistasis models
- PMID: 35366804
- PMCID: PMC8977015
- DOI: 10.1186/s12859-022-04645-7
PyToxo: a Python tool for calculating penetrance tables of high-order epistasis models
Abstract
Background: Epistasis is the interaction between different genes when expressing a certain phenotype. If epistasis involves more than two loci it is called high-order epistasis. High-order epistasis is an area under active research because it could be the cause of many complex traits. The most common way to specify an epistasis interaction is through a penetrance table.
Results: This paper presents PyToxo, a Python tool for generating penetrance tables from any-order epistasis models. Unlike other tools available in the bibliography, PyToxo is able to work with high-order models and realistic penetrance and heritability values, achieving high-precision results in a short time. In addition, PyToxo is distributed as open-source software and includes several interfaces to ease its use.
Conclusions: PyToxo provides the scientific community with a useful tool to evaluate algorithms and methods that can detect high-order epistasis to continue advancing in the discovery of the causes behind complex diseases.
Keywords: Epistasis model; Gene interaction; Heritability; Penetrance; Prevalence; Python; Simulation; SymPy.
© 2022. The Author(s).
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
Similar articles
-
Deep learning captures the effect of epistasis in multifactorial diseases.Front Med (Lausanne). 2025 Jan 7;11:1479717. doi: 10.3389/fmed.2024.1479717. eCollection 2024. Front Med (Lausanne). 2025. PMID: 39839630 Free PMC article.
-
Toxo: a library for calculating penetrance tables of high-order epistasis models.BMC Bioinformatics. 2020 Apr 9;21(1):138. doi: 10.1186/s12859-020-3456-3. BMC Bioinformatics. 2020. PMID: 32272874 Free PMC article.
-
A whole-genome simulator capable of modeling high-order epistasis for complex disease.Genet Epidemiol. 2013 Nov;37(7):686-94. doi: 10.1002/gepi.21761. Epub 2013 Oct 1. Genet Epidemiol. 2013. PMID: 24114848 Free PMC article.
-
Travelling the world of gene-gene interactions.Brief Bioinform. 2012 Jan;13(1):1-19. doi: 10.1093/bib/bbr012. Epub 2011 Mar 26. Brief Bioinform. 2012. PMID: 21441561 Review.
-
The causes of epistasis.Proc Biol Sci. 2011 Dec 22;278(1725):3617-24. doi: 10.1098/rspb.2011.1537. Epub 2011 Oct 5. Proc Biol Sci. 2011. PMID: 21976687 Free PMC article. Review.
Cited by
-
Distributed transformer for high order epistasis detection in large-scale datasets.Sci Rep. 2024 Jun 25;14(1):14579. doi: 10.1038/s41598-024-65317-5. Sci Rep. 2024. PMID: 38918413 Free PMC article.
-
Deep learning captures the effect of epistasis in multifactorial diseases.Front Med (Lausanne). 2025 Jan 7;11:1479717. doi: 10.3389/fmed.2024.1479717. eCollection 2024. Front Med (Lausanne). 2025. PMID: 39839630 Free PMC article.
References
-
- Shang J, Zhang J, Lei X, Zhao W, Dong Y. EpiSIM: simulation of multiple epistasis, linkage disequilibrium patterns and haplotype blocks for genome-wide interaction analysis. Genes Genomics. 2013;35(3):305–16. doi: 10.1007/s13258-013-0081-9. - DOI
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources