Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun:145:105454.
doi: 10.1016/j.compbiomed.2022.105454. Epub 2022 Mar 26.

Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking

Affiliations
Free article

Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking

Ying Wang et al. Comput Biol Med. 2022 Jun.
Free article

Abstract

Background: Qingfeiyin (QFY) is a common Chinese herbal formula for the treatment of acute lung injury (ALI). However, its mechanisms of action are unclear. In this study, we systematically explored the effects and mechanism of action of QFY in ALI using network pharmacology and molecular docking.

Methods: Active compounds and targets of QFY were obtained from TCMSP and TCMID. ALI-related targets were retrieved from GEO datasets combined with GeneCards, OMIM, and TTD databases. A protein-protein interaction (PPI) network was built to screen the core targets. DAVID was used for GO and KEGG pathway enrichment analyses. The tissue and organ distribution of targets was evaluated. Interactions between potential targets and active compounds were assessed by molecular docking. A molecular dynamics simulation was conducted for the optimal core protein-compound complexes obtained by molecular docking.

Results: In total, 128 active compounds and 121 targets of QFY were identified. A topological analysis of the PPI network revealed 13 core targets. GO and KEGG pathway enrichment analyses indicated that the effects of QFY are mediated by genes related to inflammation, apoptosis, and oxidative stress as well as the MAPK and PI3K-Akt signaling pathways. Molecular docking and molecular dynamics simulations revealed good binding ability between the active compounds and screened targets.

Conclusions: This study successfully predict the effective components and potential targets and pathways involved in the treatment of ALI for QFY. We provided a novel strategy for future research of molecular mechanisms of QFY in ALI treatment. Moreover, the potential active ingredients provide a reliable source for drug screening for ALI.

Keywords: Acute lung injury; GEO datasets; Molecular docking; Network pharmacology; Qingfeiyin; Traditional Chinese medicine.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources