Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jun 1:180:27-34.
doi: 10.1016/j.plaphy.2022.03.026. Epub 2022 Mar 30.

SlMYC2 mediates jasmonate-induced tomato leaf senescence by promoting chlorophyll degradation and repressing carbon fixation

Affiliations

SlMYC2 mediates jasmonate-induced tomato leaf senescence by promoting chlorophyll degradation and repressing carbon fixation

Fei Ding et al. Plant Physiol Biochem. .

Abstract

Leaf senescence occurs as the last developmental phase of leaf. The initiation and progression of leaf senescence is highly regulated by a plethora of internal developmental signals and environmental stimuli. Being an important class of phytohormones, jasmonates (JAs) are shown to induce premature leaf senescence in tomato (Solanum lycopersicum), nevertheless, the underlying mechanisms remain enigmatic. Here, we report that tomato MYC2, a key factor in the JA signal transduction, functions in JA-induced tomato leaf senescence by promoting chlorophyll degradation and inhibiting photosynthetic carbon fixation. We found that exogenous application of MeJA reduced chlorophyll content, decreased carbon assimilation rates and disrupted membrane integrity. We further demonstrated using SlMYC2-RNAi tomato plants that SlMYC2 enhanced the expression of SlPAO, which encodes a chlorophyll degradation enzyme, but suppressed the expression of SlRCA and SlSBPASE, both of which are required for photosynthesis and growth in plants. Dual-luciferase assay confirmed that SlMYC2 activated the transcription of SlPAO, but inhibited the transcription of SlRCA and SlSBPASE. Furthermore, repression of SlRCA led to typical features associated with leaf senescence in tomato. Taken together, these results favor that tomato MYC2 acts positively in the regulation of JA-dependent tomato leaf senescence. The results extend our mechanistic understanding of JA-induced senescence in an important horticultural crop.

Keywords: Chlorophyll; MYC2; Methyl jasmonate; Photosynthesis; Senescence; Tomato.

PubMed Disclaimer