Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Jan 6;13(10):2900-2908.
doi: 10.1039/d1sc05899a. eCollection 2022 Mar 9.

Overcoming peri- and ortho-selectivity in C-H methylation of 1-naphthaldehydes by a tunable transient ligand strategy

Affiliations

Overcoming peri- and ortho-selectivity in C-H methylation of 1-naphthaldehydes by a tunable transient ligand strategy

Yujian Mao et al. Chem Sci. .

Abstract

Methyl groups widely exist in bioactive molecules, and site-specific methylation has become a valuable strategy for their structural functionalization. Aiming to introduce this smallest alkyl handle, a highly regioselective peri- and ortho-C-H methylation of 1-naphthaldehyde by using a transient ligand strategy has been developed. A series of methyl-substituted naphthalene frameworks have been prepared in moderate to excellent yields. Mechanistic studies demonstrate that peri-methylation is controlled by the higher electronic density of the peri-position of 1-naphthaldehyde as well as the formation of intermediary 5,6-fused bicyclic palladacycles, whereas experimental studies and theoretical calculations inferred that a 5-membered iridacycle at the ortho-position of 1-naphthaldehyde leads to energetically favorable ortho-methylation via an interconversion between the peri-iridacycle and ortho-iridacycle. Importantly, to demonstrate the synthetic utility of this method, we show that this strategy can serve as a platform for the synthesis of multi-substituted naphthalene-based bioactive molecules and natural products.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Fig. 1
Fig. 1. (A) Methyl groups in natural products and bioactive molecules. (B) Selectivity from benzene to naphthalene. (C) Peri- and ortho-C–H functionalizations of naphthalene. (D) Regioselective C–H methylation of 1-naphthaldehydes with tunable TDGs.
Scheme 1
Scheme 1. Synthesis of diverse naphthaldehydes via sequential C–H functionalizationsa. aReaction conditions: (a) 1a or 3a, CH3BF3K (3.5 eq.), Pd(OAc)2 (10 mol%), TDG (60 mol%), Cu(TFA)2-xH2O (2 eq.), CsOAc (2 eq.), HFIP : AcOH = 7 : 1, H2O (10 eq.), 90 °C, sealed tube, 36 h. (b) 1a, CH3BF3K (2 eq.), [Cp*IrCl2]2 (5 mol%), TDG (20 mol%), AgNTf2 (20 mol%), AgOAc (2.5 eq.), AcOH, 90 °C, N2, sealed tube, 4 h. (c) 2a, [Ru(p-cymene)Cl2]2 (5 mol%), AgSbF6 (20 mol%), 2-methyl-3-(trifluoromethyl)aniline (20 mol%), 4-chlorobenzoic acid (0.5 eq.), 1-ethyl-1H-pyrrole-2,5-dione (1.5 eq.), DCE : HFIP = 5 : 1, 60 °C, N2, sealed tube, 36 h. (d) 2a, Pd(OAc)2 (10 mol%), methyl 4-iodobenzoate (2 eq.), 2-amino-2-methylpropanoic acid (40 mol%), AgTFA (1 eq.), HFIP : TFA = 9 : 1, 110 °C, sealed tube, 24 h. (e) 2a, [CpIrCl2]2 (4 mol%), 3-trifluoromethylaniline (40 mol%), 4-methylbenzenesulfonyl azide (2 eq.), AgPF6 (24 mol%), DCE, 100 °C, N2, sealed tube, 36 h. (f) 2a or 3a, NCS (1.3 or 1.5 eq.), Pd(OAc)2 (10 mol%), anthranilic acid (30 mol%), AgTFA (10 mol%), TFA (10 eq.), DCE, 60 °C, sealed tube, 24 h. (g) 3a, Pd(OAc)2 (10 mol%), K2S2O8 (2 eq.), MeOH (20 eq.), 3-(trifluoromethyl)aniline (40 mol%), CH2Cl2, 60 °C, sealed tube, 36 h. (h) 3a, NBS (1.5 eq.), Pd(OAc)2 (10 mol%), 2-amino-4-nitrobenzoic acid (50 mol%), AgTFA (10 mol%), TfOH (50 mol%), DCE, 90 °C, sealed tube, 24 h.
Scheme 2
Scheme 2. Synthetic transformation of regioselective peri- and ortho-C–H methylation.
Scheme 3
Scheme 3. Mechanistic studies.
Fig. 2
Fig. 2. (A) The calculated reaction energy profile of palladacycle complex formation steps. (B) IBO analysis of the palladium-assisted peri-C–H activation of TS2.
Fig. 3
Fig. 3. (A) The calculated reaction energy profile of the formation of intermediate 24. (B) IBO analysis of the iridium-assisted ortho-C–H activation of TS3. (C) The calculated reaction energy profile of the formation of product 23.
Scheme 4
Scheme 4. Possible mechanistic pathway.

References

    1. Barreiro E. J. Kümmerle A. E. Fraga C. A. M. Chem. Rev. 2011;111:5215–5246. doi: 10.1021/cr200060g. - DOI - PubMed
    2. Schönherr H. Cernak T. Angew. Chem., Int. Ed. 2013;52:12256–12267. doi: 10.1002/anie.201303207. - DOI - PubMed
    1. Yan G. Borah A. J. Wang L. Yang M. Adv. Synth. Catal. 2015;357:1333–1350. doi: 10.1002/adsc.201400984. - DOI
    1. Gwilherm E. Cédric T. Angew. Chem., Int. Ed. 2019;58:7202–7236. doi: 10.1002/anie.201806629. - DOI - PubMed
    2. Friis S. D. Johansson M. J. Ackermann L. Nat. Chem. 2020;12:511–519. doi: 10.1038/s41557-020-0475-7. - DOI - PubMed
    1. Okumura S. Tang S. Saito T. Semba K. Sakaki S. Nakao Y. J. Am. Chem. Soc. 2016;138:14699–14704. doi: 10.1021/jacs.6b08767. - DOI - PubMed
    2. Liang S. Bolte M. Manolikakes G. Chem.–Eur. J. 2017;23:96–100. doi: 10.1002/chem.201605101. - DOI - PubMed
    3. Li J. Wang Y. Yu Y. Wu R. Weng J. Lu G. ACS Catal. 2017;7:2661–2667. doi: 10.1021/acscatal.6b03671. - DOI
    4. Jing C. Chen X. Sun K. Yang Y. Chen T. Liu Y. Qu L. Zhao Y. Yu B. Org. Lett. 2019;21:486–489. doi: 10.1021/acs.orglett.8b03768. - DOI - PubMed
    5. Zhang M. Luo A. Shi Y. Su R. Yang Y. You J. ACS Catal. 2019;9:11802–11807. doi: 10.1021/acscatal.9b04352. - DOI
    6. Prévost S. ChemPlusChem. 2020;85:476–486. doi: 10.1002/cplu.202000005. - DOI - PubMed
    7. Large B. Prim D. Synthesis. 2020;52:2600–2612. doi: 10.1055/s-0040-1707855. - DOI
    1. Examples of picolinamide directed C8–H founctionalization of naphthalene, see:

    2. Huang L. Li Q. Wang C. Qi C. J. Org. Chem. 2013;78:3030–3038. doi: 10.1021/jo400017v. - DOI - PubMed
    3. Nadres E. T. Santos G. I. F. Shabashov D. Daugulis O. J. Org. Chem. 2013;78:9689–9714. doi: 10.1021/jo4013628. - DOI - PMC - PubMed
    4. Odani R. Hirano K. Satoh T. Miura M. J. Org. Chem. 2013;78:11045–11052. doi: 10.1021/jo402078q. - DOI - PubMed
    5. Huang L. Sun X. Li Q. Qi C. J. Org. Chem. 2014;79:6720–6725. doi: 10.1021/jo500932x. - DOI - PubMed
    6. Shang R. Ilies L. Nakamura E. J. Am. Chem. Soc. 2015;137:7660–7663. doi: 10.1021/jacs.5b04818. - DOI - PubMed
    7. Li Z. Sun S. Qiao H. Yang F. Zhu Y. Kang J. Wu Y. Wu Y. Org. Lett. 2016;18:4594–4597. doi: 10.1021/acs.orglett.6b02243. - DOI - PubMed
    8. Xiong Y. Yu Y. Weng J. Lu G. Org. Chem. Front. 2018;5:982–989. doi: 10.1039/C7QO01016H. - DOI
    9. Rej S. Chatani N. ACS Catal. 2018;8:6699–6706. doi: 10.1021/acscatal.8b01675. - DOI
    10. Zhang T. Zhu H. Yang F. Wu Y. Wu Y. Tetrahedron. 2019;75:1541–1547. doi: 10.1016/j.tet.2019.02.002. - DOI
    11. Yu X. Yang F. Wu Y. Wu Y. Org. Lett. 2019;21:1726–1729. doi: 10.1021/acs.orglett.9b00283. - DOI - PubMed
    12. Yao Y. Lin Q. Yang W. Yang W. Gu F. Guo W. Yang D. Chem.–Eur. J. 2020;26:5607–5610. doi: 10.1002/chem.202000411. - DOI - PubMed
    13. Zu C. Zhang T. Yang F. Wu Y. Wu Y. J. Org. Chem. 2020;85:12777–12784. doi: 10.1021/acs.joc.0c01672. - DOI - PubMed

LinkOut - more resources