Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul-Aug;37(15):2575-2582.
doi: 10.1080/14786419.2022.2061480. Epub 2022 Apr 6.

Production of ethanol, lipid and lactic acid from mixed agrowastes hydrolysate

Affiliations

Production of ethanol, lipid and lactic acid from mixed agrowastes hydrolysate

Jyoti Singh et al. Nat Prod Res. 2023 Jul-Aug.

Abstract

To combat the shortage of single agro-residue and overcome the problem of seasonal availability, it is beneficial to use mixture of lignocellulosic biomasses. In the present study, efforts were made to use mixed lignocellulosic biomass for production of bioethanol, along with microbial lipids and lactic acid. Upon enzymatic hydrolysis of mixed biomass at varied proportions it was observed that mixture of paddy straw and jute in the ratio 3:1 resulted in best sugar yield (41.50 g/L) at 10% substrate loading. Ethanolic fermentation of mixed substrate hydrolysate by thermotolerant yeast, Saccharomyces cerevisiae JRC6 resulted in 8.39 g/L of ethanol. To maintain sustainability and economic impact, oleaginous yeast (Trichosporon mycotoxinivorans S2) and lactic acid bacteria (Lactobacillus plantarum LP-9) were used for lipid production (14.5 g/L) and lactic acid production (11.08 g/L), respectively. Therefore, this study explored the potential of mixed lignocellulosic biomass to be exploited for production of various value-added products.

Keywords: Oleaginous yeast; bioethanol; jute; lactic acid bacteria; mesta; single cell oils.

PubMed Disclaimer

LinkOut - more resources