Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2022 Apr;25(4):421-432.
doi: 10.1038/s41593-022-01042-4. Epub 2022 Apr 5.

Genetic variants associated with longitudinal changes in brain structure across the lifespan

Rachel M Brouwer  1   2 Marieke Klein  3   4   5   6 Katrina L Grasby  7 Hugo G Schnack  3   8 Neda Jahanshad  9 Jalmar Teeuw  3 Sophia I Thomopoulos  9 Emma Sprooten  10 Carol E Franz  11 Nitin Gogtay  12 William S Kremen  11   13 Matthew S Panizzon  11 Loes M Olde Loohuis  14 Christopher D Whelan  15 Moji Aghajani  16   17 Clara Alloza  18 Dag Alnæs  19   20 Eric Artiges  21 Rosa Ayesa-Arriola  22   23   24 Gareth J Barker  25 Mark E Bastin  26   27   28 Elisabet Blok  29 Erlend Bøen  30 Isabella A Breukelaar  31 Joanna K Bright  9 Elizabeth E L Buimer  3 Robin Bülow  32 Dara M Cannon  33 Simone Ciufolini  34 Nicolas A Crossley  34   35 Christienne G Damatac  10 Paola Dazzan  36 Casper L de Mol  37 Sonja M C de Zwarte  3 Sylvane Desrivières  38 Covadonga M Díaz-Caneja  18 Nhat Trung Doan  19 Katharina Dohm  39 Juliane H Fröhner  40 Janik Goltermann  39 Antoine Grigis  41 Dominik Grotegerd  39 Laura K M Han  16 Mathew A Harris  26 Catharina A Hartman  42 Sarah J Heany  43 Walter Heindel  44 Dirk J Heslenfeld  45 Sarah Hohmann  46 Bernd Ittermann  47 Philip R Jansen  48   29   49 Joost Janssen  18 Tianye Jia  50   51 Jiyang Jiang  52 Christiane Jockwitz  53   54 Temmuz Karali  55   56 Daniel Keeser  55   56   57 Martijn G J C Koevoets  3 Rhoshel K Lenroot  58   59   60 Berend Malchow  61 René C W Mandl  3 Vicente Medel  35 Susanne Meinert  39   62 Catherine A Morgan  63   64 Thomas W Mühleisen  53   65   66 Leila Nabulsi  33 Nils Opel  39   67 Víctor Ortiz-García de la Foz  22   23   68 Bronwyn J Overs  60 Marie-Laure Paillère Martinot  21   69 Ronny Redlich  39   70 Tiago Reis Marques  34   71 Jonathan Repple  39 Gloria Roberts  58 Gennady V Roshchupkin  72   73 Nikita Setiaman  3   29 Elena Shumskaya  5   10 Frederike Stein  74 Gustavo Sudre  75 Shun Takahashi  55   76 Anbupalam Thalamuthu  52 Diana Tordesillas-Gutiérrez  77   78 Aad van der Lugt  73 Neeltje E M van Haren  3   29 Joanna M Wardlaw  26   79 Wei Wen  52 Henk-Jan Westeneng  80 Katharina Wittfeld  81   82 Alyssa H Zhu  9 Andre Zugman  83   84 Nicola J Armstrong  85 Gaia Bonfiglio  48 Janita Bralten  5   6 Shareefa Dalvie  43 Gail Davies  26   86 Marta Di Forti  38 Linda Ding  9 Gary Donohoe  87 Andreas J Forstner  53   88   89 Javier Gonzalez-Peñas  18 Joao P O F T Guimaraes  5   10 Georg Homuth  90 Jouke-Jan Hottenga  91 Maria J Knol  72 John B J Kwok  92   93 Stephanie Le Hellard  94   95 Karen A Mather  52   60 Yuri Milaneschi  16 Derek W Morris  87 Markus M Nöthen  89 Sergi Papiol  23   55   96 Marcella Rietschel  97 Marcos L Santoro  83   84   98 Vidar M Steen  94   95 Jason L Stein  99 Fabian Streit  97 Rick M Tankard  85 Alexander Teumer  100 Dennis van 't Ent  91 Dennis van der Meer  19   20   101 Kristel R van Eijk  80 Evangelos Vassos  38   102 Javier Vázquez-Bourgon  22   23   24 Stephanie H Witt  97 IMAGEN ConsortiumHieab H H Adams  73   103   104 Ingrid Agartz  19   105   106 David Ames  107   108 Katrin Amunts  53   65 Ole A Andreassen  19   20 Celso Arango  18 Tobias Banaschewski  46 Bernhard T Baune  109   110   111 Sintia I Belangero  83   84   98 Arun L W Bokde  112 Dorret I Boomsma  91 Rodrigo A Bressan  83   84   113 Henry Brodaty  52 Jan K Buitelaar  10   114 Wiepke Cahn  3   115 Svenja Caspers  53   54 Sven Cichon  53   66   116 Benedicto Crespo-Facorro  23   117 Simon R Cox  26   118 Udo Dannlowski  39 Torbjørn Elvsåshagen  119   120   121 Thomas Espeseth  122   123 Peter G Falkai  55 Simon E Fisher  6   124 Herta Flor  125 Janice M Fullerton  60   93 Hugh Garavan  126 Penny A Gowland  127 Hans J Grabe  81   82 Tim Hahn  39 Andreas Heinz  128 Manon Hillegers  3   29 Jacqueline Hoare  43   129 Pieter J Hoekstra  130 Mohammad A Ikram  72 Andrea P Jackowski  83   84 Andreas Jansen  74   131 Erik G Jönsson  19   105 Rene S Kahn  132   133 Tilo Kircher  74 Mayuresh S Korgaonkar  31   92 Axel Krug  74   134 Herve Lemaitre  135 Ulrik F Malt  136 Jean-Luc Martinot  21 Colm McDonald  33 Philip B Mitchell  58 Ryan L Muetzel  29 Robin M Murray  34 Frauke Nees  46   125   137 Igor Nenadić  74 Jaap Oosterlaan  138   139 Roel A Ophoff  14   140 Pedro M Pan  83   84 Brenda W J H Penninx  16 Luise Poustka  141 Perminder S Sachdev  52   142 Giovanni A Salum  84   143   144 Peter R Schofield  60   93 Gunter Schumann  145   146 Philip Shaw  75   147 Kang Sim  148   149 Michael N Smolka  150 Dan J Stein  151 Julian N Trollor  52   152 Leonard H van den Berg  80 Jan H Veldink  80 Henrik Walter  153 Lars T Westlye  19   20   122 Robert Whelan  154 Tonya White  29   73 Margaret J Wright  155   156 Sarah E Medland  157 Barbara Franke #  5   6   158 Paul M Thompson #  9 Hilleke E Hulshoff Pol #  159   160
Collaborators, Affiliations
Meta-Analysis

Genetic variants associated with longitudinal changes in brain structure across the lifespan

Rachel M Brouwer et al. Nat Neurosci. 2022 Apr.

Abstract

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.

Trial registration: ClinicalTrials.gov NCT02534363 NCT02305832.

PubMed Disclaimer

Conflict of interest statement

Competing interests:

Other authors declare no conflict of interest.

Figures

Extended Data Fig. 1
Extended Data Fig. 1. Demographics and analysis
Overview of demographics (left). Per cohort, an age distribution is displayed, based on mean and standard deviation of the age at baseline. Cohorts of European ancestry are displayed in green, non-European cohorts are displayed in yellow. On the right, the total number of included subjects is displayed and a pie-chart of the distribution of diagnostic groups (pink) and subjects not belonging to diagnostic groups - often healthy subjects (aqua). Overview of analysis pipeline (right).
Extended Data Fig. 2
Extended Data Fig. 2. Correlations between change rates
Pearson correlations between rates of change and between baseline intracranial volume and rates of change in the largest adolescent cohort (top, N = 1068) and the largest cohort in older age (bottom, N = 624) in phase 1. The size of the correlations is displayed by color and size of the circles.
Figure 1:
Figure 1:
Phenotypic brain changes throughout the lifespan. Visualization of growth and decline of brain structures throughout the lifespan. The subcortical structures are shown in exploded view.
Figure 2:
Figure 2:
Annual rates of change Δ per cohort for each structure (a-o). The estimated trajectories with 95% confidence intervals (in green) are displayed in the top row. Mean values of individual cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents the relative size of the cohorts, total sample size N=15640. Means and standard deviations are based on raw data – no covariates were included. Cohorts that were added in phase 2 are displayed in grey. Only cohorts that satisfy N>75 and mean interval > 0.5 years are shown. The estimated trajectories of the volumes themselves are displayed in the bottom row, for all subjects (solid line) and for subjects not part of diagnostic groups (dashed line).
Figure 3:
Figure 3:
Genetic effects on rates of brain changes throughout the lifespan. Genome-wide significant SNPs and genes with effects on brain changes at their respective loci across the human genome, from phase 2 (total N=15,100). This plot was created using PhenoGram (http://visualization.ritchielab.org).
Figure 4:
Figure 4:
Summary of findings for two top-SNPs. Shown here is a summary of findings for a top-SNP of an age independent effect (rs72772746; intron to GPR139; associated with rate of change of lateral ventricle volume; left column) and a top-SNP of an age dependent effect (13:72353395; intron to DACH1; associated with rate of change in cerebral white matter volume; right column). Displayed are the locus plots (a) and (d), forest plot (b; total N = 14593, means and 95% confidence intervals are displayed for each cohort; confidence intervals that are outside the axis of the plot are marked with an arrow) and plot of meta-regression (e; total N = 13864, center of the circles represent the effect size of the tested allele for each cohort, radius of the circles are proportional to sample size) and inferred lifespan trajectories for carriers (in red) and non-carriers of the effect allele (in black) (c) and (f). Note that 13:72353395 was not in the reference dataset containing LD structure; the displayed LD structure is based on 13:7234009, R2 = 0.87 with the top-SNP.
Figure 5:
Figure 5:
Genetic overlap with other phenotypes. P-values for pleiotropy between change rates of structural brain measures (rows, indicated by Δ for change rate) and neuropsychiatric, disease-related and psychological traits (columns on the left). P-values for pleiotropy between change rates of structural brain measures and head size (intracranial volume) and the cross-sectional brain measure are displayed on the right. The colour legend is displayed on the right, indicating the -log10 p-value. Significant overlap (p < 1.6e-04; obtained through permutation testing, two-sided, Bonferroni corrected) is marked with *. P-values underlying this figure can be found in Supplemental Table 16.

References

    1. Hedman AM, van Haren NE, Schnack HG, Kahn RS & Hulshoff Pol HE Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33, 1987–2002 (2012). - PMC - PubMed
    1. Giedd JN et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2, 861–863 (1999). - PubMed
    1. Raz N. et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15, 1676–1689 (2005). - PubMed
    1. Ramsden S. et al. Verbal and non-verbal intelligence changes in the teenage brain. Nature 0, 6–10 (2011). - PMC - PubMed
    1. Schnack HG et al. Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25, 1608–1617 (2015). - PubMed

Methods References

    1. Fischl B. et al. Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron 33, 341–355 (2002). - PubMed
    1. Fischl B. et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage 23 Suppl 1, S69–84 (2004). - PubMed
    1. Reuter M, Schmansky NJ, Rosas HD & Fischl B. Within-Subject Template Estimation for Unbiased Longitudinal Image Analysis. Neuroimage 61, 1402–1418 (2012). - PMC - PubMed
    1. Iscan Z. et al. Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Hum. Brain Mapp 36, 3472–3485 (2015). - PMC - PubMed
    1. Wonderlick JS et al. Reliability of MRI-derived cortical and subcortical morphometric measures: Effects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage (2009) doi:10.1016/j.neuroimage.2008.10.037. - DOI - PMC - PubMed

Publication types

Associated data

Grants and funding