Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 12;119(15):e2113561119.
doi: 10.1073/pnas.2113561119. Epub 2022 Apr 8.

Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

Estee Y Cramer  1 Evan L Ray  1 Velma K Lopez  2 Johannes Bracher  3   4 Andrea Brennen  5 Alvaro J Castro Rivadeneira  1 Aaron Gerding  1 Tilmann Gneiting  4   6 Katie H House  1 Yuxin Huang  1 Dasuni Jayawardena  1 Abdul H Kanji  1 Ayush Khandelwal  1 Khoa Le  1 Anja Mühlemann  7 Jarad Niemi  8 Apurv Shah  1 Ariane Stark  1 Yijin Wang  1 Nutcha Wattanachit  1 Martha W Zorn  1 Youyang Gu  9 Sansiddh Jain  10 Nayana Bannur  10 Ayush Deva  10 Mihir Kulkarni  10 Srujana Merugu  10 Alpan Raval  10 Siddhant Shingi  10 Avtansh Tiwari  10 Jerome White  10 Neil F Abernethy  11 Spencer Woody  12 Maytal Dahan  13 Spencer Fox  12 Kelly Gaither  13 Michael Lachmann  14 Lauren Ancel Meyers  12 James G Scott  15 Mauricio Tec  16 Ajitesh Srivastava  17 Glover E George  18 Jeffrey C Cegan  19 Ian D Dettwiller  18 William P England  18 Matthew W Farthing  18 Robert H Hunter  18 Brandon Lafferty  18 Igor Linkov  19 Michael L Mayo  18 Matthew D Parno  20 Michael A Rowland  18 Benjamin D Trump  19 Yanli Zhang-James  21 Samuel Chen  22 Stephen V Faraone  21 Jonathan Hess  21 Christopher P Morley  23 Asif Salekin  24 Dongliang Wang  23 Sabrina M Corsetti  25 Thomas M Baer  26 Marisa C Eisenberg  27   28   29 Karl Falb  25 Yitao Huang  25 Emily T Martin  29 Ella McCauley  25 Robert L Myers  25 Tom Schwarz  25 Daniel Sheldon  30 Graham Casey Gibson  31 Rose Yu  32   33 Liyao Gao  34 Yian Ma  35 Dongxia Wu  32 Xifeng Yan  36 Xiaoyong Jin  36 Yu-Xiang Wang  36 YangQuan Chen  37 Lihong Guo  38 Yanting Zhao  39 Quanquan Gu  40 Jinghui Chen  40 Lingxiao Wang  40 Pan Xu  40 Weitong Zhang  40 Difan Zou  40 Hannah Biegel  41 Joceline Lega  41 Steve McConnell  42 V P Nagraj  43 Stephanie L Guertin  43 Christopher Hulme-Lowe  44 Stephen D Turner  43 Yunfeng Shi  45 Xuegang Ban  46 Robert Walraven  47 Qi-Jun Hong  48   49 Stanley Kong  50 Axel van de Walle  49 James A Turtle  51 Michal Ben-Nun  51 Steven Riley  52 Pete Riley  51 Ugur Koyluoglu  53 David DesRoches  54 Pedro Forli  55 Bruce Hamory  56 Christina Kyriakides  57 Helen Leis  58 John Milliken  53 Michael Moloney  53 James Morgan  53 Ninad Nirgudkar  59 Gokce Ozcan  53 Noah Piwonka  58 Matt Ravi  59 Chris Schrader  58 Elizabeth Shakhnovich  58 Daniel Siegel  53 Ryan Spatz  59 Chris Stiefeling  60 Barrie Wilkinson  61 Alexander Wong  57 Sean Cavany  62 Guido España  62 Sean Moore  62 Rachel Oidtman  62   63 Alex Perkins  62 David Kraus  64 Andrea Kraus  64 Zhifeng Gao  65 Jiang Bian  65 Wei Cao  65 Juan Lavista Ferres  65 Chaozhuo Li  65 Tie-Yan Liu  65 Xing Xie  65 Shun Zhang  65 Shun Zheng  65 Alessandro Vespignani  66   67 Matteo Chinazzi  67 Jessica T Davis  67 Kunpeng Mu  67 Ana Pastore Y Piontti  67 Xinyue Xiong  67 Andrew Zheng  68 Jackie Baek  68 Vivek Farias  69 Andreea Georgescu  68 Retsef Levi  69 Deeksha Sinha  68 Joshua Wilde  68 Georgia Perakis  70 Mohammed Amine Bennouna  70 David Nze-Ndong  70 Divya Singhvi  71 Ioannis Spantidakis  70 Leann Thayaparan  70 Asterios Tsiourvas  70 Arnab Sarker  72 Ali Jadbabaie  72 Devavrat Shah  72 Nicolas Della Penna  73 Leo A Celi  73 Saketh Sundar  74 Russ Wolfinger  75 Dave Osthus  76 Lauren Castro  77 Geoffrey Fairchild  77 Isaac Michaud  76 Dean Karlen  78   79 Matt Kinsey  80 Luke C Mullany  80 Kaitlin Rainwater-Lovett  80 Lauren Shin  80 Katharine Tallaksen  80 Shelby Wilson  80 Elizabeth C Lee  81 Juan Dent  81 Kyra H Grantz  81 Alison L Hill  82 Joshua Kaminsky  81 Kathryn Kaminsky  83 Lindsay T Keegan  84 Stephen A Lauer  81 Joseph C Lemaitre  85 Justin Lessler  81 Hannah R Meredith  81 Javier Perez-Saez  81 Sam Shah  86 Claire P Smith  81 Shaun A Truelove  81   87   88 Josh Wills  86 Maximilian Marshall  89 Lauren Gardner  89 Kristen Nixon  89 John C Burant  90 Lily Wang  8 Lei Gao  91 Zhiling Gu  8 Myungjin Kim  8 Xinyi Li  92 Guannan Wang  93 Yueying Wang  8 Shan Yu  94 Robert C Reiner  95 Ryan Barber  95 Emmanuela Gakidou  95 Simon I Hay  95 Steve Lim  95 Chris Murray  95 David Pigott  95 Heidi L Gurung  96 Prasith Baccam  96 Steven A Stage  97 Bradley T Suchoski  96 B Aditya Prakash  98 Bijaya Adhikari  99 Jiaming Cui  98 Alexander Rodríguez  98 Anika Tabassum  100 Jiajia Xie  98 Pinar Keskinocak  101 John Asplund  102 Arden Baxter  101 Buse Eylul Oruc  101 Nicoleta Serban  101 Sercan O Arik  103 Mike Dusenberry  103 Arkady Epshteyn  103 Elli Kanal  103 Long T Le  103 Chun-Liang Li  103 Tomas Pfister  103 Dario Sava  103 Rajarishi Sinha  103 Thomas Tsai  104 Nate Yoder  103 Jinsung Yoon  103 Leyou Zhang  103 Sam Abbott  105 Nikos I Bosse  105 Sebastian Funk  105 Joel Hellewell  105 Sophie R Meakin  105 Katharine Sherratt  105 Mingyuan Zhou  106 Rahi Kalantari  107 Teresa K Yamana  108 Sen Pei  108 Jeffrey Shaman  108 Michael L Li  68 Dimitris Bertsimas  69 Omar Skali Lami  68 Saksham Soni  68 Hamza Tazi Bouardi  68 Turgay Ayer  101   109 Madeline Adee  110 Jagpreet Chhatwal  110 Ozden O Dalgic  111 Mary A Ladd  110 Benjamin P Linas  112 Peter Mueller  110 Jade Xiao  101 Yuanjia Wang  113   114 Qinxia Wang  113 Shanghong Xie  113 Donglin Zeng  115 Alden Green  116 Jacob Bien  117 Logan Brooks  116 Addison J Hu  116 Maria Jahja  116 Daniel McDonald  118 Balasubramanian Narasimhan  119   120 Collin Politsch  121 Samyak Rajanala  120 Aaron Rumack  121 Noah Simon  122 Ryan J Tibshirani  116 Rob Tibshirani  120 Valerie Ventura  116 Larry Wasserman  116 Eamon B O'Dea  123 John M Drake  123 Robert Pagano  124 Quoc T Tran  125 Lam Si Tung Ho  126 Huong Huynh  127 Jo W Walker  2 Rachel B Slayton  2 Michael A Johansson  2 Matthew Biggerstaff  2 Nicholas G Reich  1
Affiliations

Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

Estee Y Cramer et al. Proc Natl Acad Sci U S A. .

Erratum in

Abstract

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.

Keywords: COVID-19; ensemble forecast; forecasting; model evaluation.

PubMed Disclaimer

Conflict of interest statement

Competing interest statement: A.V., M.C., and A.P.P. report grants from Metabiota Inc. outside the submitted work.

Figures

Fig. 1.
Fig. 1.
Overview of the evaluation period included in the paper. Vertical dashed lines indicate “phases” of the pandemic analyzed separately in SI Appendix. (A) The reported number of incident weekly COVID-19 deaths by state or territory, per JHU CSSE reports. Locations are sorted by the cumulative number of deaths as of October 30th, 2021. (B) The time series of weekly incident deaths at the national level overlaid with example forecasts from the COVID-19 Forecast Hub ensemble model. (C) The number of models submitting forecasts for incident deaths each week. Weeks in which the ensemble was submitted are shown with a red asterisk.
Fig. 2.
Fig. 2.
A comparison of each model’s distribution of standardized rank of WIS for each location/target/week observation. A standardized rank of 1 indicates that the model had the best WIS for that particular location, target, and week, and a value of 0 indicates it had the worst WIS. The density plots show interpolated distributions of the standardized ranks achieved by each model for every observation that model forecasted. The quartiles of each model’s distribution of standardized ranks are shown in different colors: yellow indicates the top quarter of the distribution and purple indicates the bottom quarter of the distribution. The models are ordered by the first quartile of the distribution, with models that rarely had a low rank near the top.
Fig. 3.
Fig. 3.
Average WIS by the target forecasted week for each model across all 50 states. A shows the observed weekly COVID-19 deaths based on the CSSE-reported data as of May 25, 2021. B shows the average 1-wk-ahead WIS values per model (in gray). For all 21 wk in which the ensemble model (red triangle) is present, this model has lower WIS values than the baseline model (green square) and the average score of all models (blue circle). C shows the average 4-wk-ahead WIS values per model (in gray). For all 21 wk in which the ensemble model (red triangle) is present, this model has lower WIS values than the baseline model (green square) and the average score of all models (blue circle). The y-axes are truncated in B and C for readability of the majority of the data.
Fig. 4.
Fig. 4.
Forecasts for selected states and pandemic waves, with PIs coverage. The first column shows every 1- and 4-wk-ahead forecast with 95% PIs made by the ensemble during the selected evaluation period. The second and third columns of plots show evaluations of PIs across 1- through 4-wk horizons (x-axis). The red line with triangle points corresponds to the coverage rates of the COVIDhub-ensemble forecasts, and green squares refer to the COVIDhub-baseline model. The boxplots represent the distribution of coverage rates from all component models. The second column evaluates only forecasts made for the dates shown in the first column. The third column evaluates forecasts across all weeks in the evaluation period. In the last two columns, the expected coverage rate (95%) is shown by the dashed line.
Fig. 5.
Fig. 5.
Relative WIS by location for each model across all horizons and submission weeks. The value in each box represents the relative WIS calculated from 1- to 4-wk-ahead targets available for a model at each location. Boxes are colored based on the relative WIS compared to the baseline model. Blue boxes represent teams that outperformed the baseline, and red boxes represent teams that performed worse than the baseline. Locations are sorted by cumulative deaths as of the end of the evaluation period (October 30, 2021). Teams are listed on the horizontal axis in order from the lowest to highest relative WIS values (Table 1).

References

    1. Davies S. E., Youde J. R., The Politics of Surveillance and Response to Disease Outbreaks: The New Frontier for States and Non-state Actors (Routledge, 2016).
    1. Polonsky J. A., et al. , Outbreak analytics: A developing data science for informing the response to emerging pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180276 (2019). - PMC - PubMed
    1. Lutz C. S., et al. , Applying infectious disease forecasting to public health: A path forward using influenza forecasting examples. BMC Public Health 19, 1659 (2019). - PMC - PubMed
    1. Cramer E., et al. , COVID-19 Forecast Hub: 4 December 2020 snapshot. https://zenodo.org/record/4305938#.Yf1TQOrMI2x (Accessed 11 December 2020).
    1. CDC, COVID-19 Forecasting and Mathematical Modeling. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/mathematic... (Accessed 2 March 2022).