Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Apr 7;29(4):545-558.e13.
doi: 10.1016/j.stem.2022.03.009.

A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration

Affiliations

A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration

Jianyong Du et al. Cell Stem Cell. .

Abstract

Zebrafish and mammalian neonates possess robust cardiac regeneration via the induction of endogenous cardiomyocyte (CM) proliferation, but adult mammalian hearts have very limited regenerative potential. Developing small molecules for inducing adult mammalian heart regeneration has had limited success. We report a chemical cocktail of five small molecules (5SM) that promote adult CM proliferation and heart regeneration. A high-content chemical screen, along with an algorithm-aided prediction of small-molecule interactions, identified 5SM that efficiently induced CM cell cycle re-entry and cytokinesis. Intraperitoneal delivery of 5SM reversed the loss of heart function, induced CM proliferation, and decreased cardiac fibrosis after rat myocardial infarction. Mechanistically, 5SM potentially targets α1 adrenergic receptor, JAK1, DYRKs, PTEN, and MCT1 and is connected to lactate-LacRS2 signaling, leading to CM metabolic switching toward glycolysis/biosynthesis and CM de-differentiation before entering the cell-cycle. Our work sheds lights on the understanding CM regenerative mechanisms and opens therapeutic avenues for repairing the heart.

Keywords: cardiomyocyte cytokinesis; cardiomyocyte proliferation; heart regeneration; high-content screen; lactate signaling; rats; small-molecule compounds.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing financial interests.

Publication types

LinkOut - more resources