Effects of reduced gag cleavage efficiency on HIV-1 Gag-Pol package
- PMID: 35395730
- PMCID: PMC8994222
- DOI: 10.1186/s12866-022-02503-3
Effects of reduced gag cleavage efficiency on HIV-1 Gag-Pol package
Abstract
Background: HIV-1 pol, which encodes enzymes required for virus replication, is initially translated as a Gag-Pol fusion protein. Gag-Pol is incorporated into virions via interactions with Gag precursor Pr55gag. Protease (PR) embedded in Gag-Pol mediates the proteolytic processing of both Pr55gag and Gag-Pol during or soon after virus particle release from cells. Since efficient Gag-Pol viral incorporation depends on interaction with Pr55gag via its N-terminal Gag domain, the prevention of premature Gag cleavage may alleviate Gag-Pol packaging deficiencies associated with cleavage enhancement from PR.
Results: We engineered PR cleavage-blocking Gag mutations with the potential to significantly reduce Gag processing efficiency. Such mutations may mitigate the negative effects of enhanced PR activation on virus assembly and Gag-Pol packaging due to an RT dimerization enhancer or leucine zipper dimerization motif. When co-expressed with Pr55gag, we noted that enhanced PR activation resulted in reduced Gag-Pol cis or trans incorporation into Pr55gag particles, regardless of whether or not Gag cleavage sites within Gag-Pol were blocked.
Conclusions: Our data suggest that the amount of HIV-1 Gag-Pol or Pol viral incorporation is largely dependent on virus particle production, and that cleavage blocking in the Gag-Pol N-terminal Gag domain does not exert significant impacts on Pol packaging.
Keywords: Gag; Gag cleavage; Gag-Pol; HIV-1; Protease; Virus assembly.
© 2022. The Author(s).
Conflict of interest statement
The authors declare that they have no competing interests.
Figures
References
-
- Petropoulos C. Retroviral Taxonomy, Protein Structures, Sequences, and Genetic Maps. In: Retroviruses. Edited by Coffin JM, Hughes SH, Varmus HE. Cold Spring Harbor Laboratory Press; 1997. - PubMed
-
- Swanstrom R, Wills JW. Synthesis, Assembly, and Processing of Viral Proteins. In: Retroviruses. Edited by Coffin JM, Hughes SH, Varmus HE. Cold Spring Harbor Laboratory Press; 1997. - PubMed
-
- Pettit SC, Moody MD, Wehbie RS, Kaplan AH, Nantermet PV, Klein CA, et al. The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol. 1994;68(12):8017–27. doi: 10.1128/jvi.68.12.8017-8027.1994. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
