Nanocrystalline Cubic Silicon Carbide: A Route to Superhardness
- PMID: 35396819
- DOI: 10.1002/smll.202201212
Nanocrystalline Cubic Silicon Carbide: A Route to Superhardness
Abstract
Superhard materials other than diamond and cubic boron nitride have been actively pursued in the past two decades. Cubic silicon carbide, i.e., β-SiC, is a well-known hard material with typical hardness <30 GPa. Although nanostructuring has been proven to be effective in enhancing materials' hardness by virtue of the Hall-Petch effect, it remains a significant challenge to improve hardness of β-SiC beyond the superhard threshold of 40 GPa. Here, the fabrication of nanocrystalline β-SiC bulks is reported by sintering nanoparticles under high pressure and high temperature. These β-SiC bulks are densely sintered with average grain sizes down to 10 nm depending on the sintering conditions, and the Vickers hardness increases with decreasing grain size following the Hall-Petch relation. Particularly, the bulk sintered under 25 GPa and 1400 °C shows an average grain size of 10 nm and an asymptotic Vickers hardness of 41.5 GPa. Boosting the hardness of β-SiC over the superhard threshold signifies an important progress in superhard materials research. A broader family of superhard materials is in sight through successful implementation of nanostructuring in other hard materials such as BP.
Keywords: cubic silicon carbide; densification; high pressure; high temperature; nanocrystalline; superhard materials.
© 2022 Wiley-VCH GmbH.
Similar articles
-
Mechanical Properties and Deformation Behavior of Superhard Lightweight Nanocrystalline Ceramics.Nanomaterials (Basel). 2022 Sep 16;12(18):3228. doi: 10.3390/nano12183228. Nanomaterials (Basel). 2022. PMID: 36145016 Free PMC article. Review.
-
Ultrahard nanotwinned cubic boron nitride.Nature. 2013 Jan 17;493(7432):385-8. doi: 10.1038/nature11728. Nature. 2013. PMID: 23325219
-
Nanotwinned diamond with unprecedented hardness and stability.Nature. 2014 Jun 12;510(7504):250-3. doi: 10.1038/nature13381. Nature. 2014. PMID: 24919919
-
Microstructure and Properties of Hot Pressing Sintered SiC/Y3Al5O12 Composite Ceramics for Dry Gas Seals.Materials (Basel). 2024 Mar 3;17(5):1182. doi: 10.3390/ma17051182. Materials (Basel). 2024. PMID: 38473653 Free PMC article.
-
High-Pressure Design of Advanced BN-Based Materials.Molecules. 2016 Oct 20;21(10):1399. doi: 10.3390/molecules21101399. Molecules. 2016. PMID: 27775629 Free PMC article. Review.
Cited by
-
Synthesis of cBN-hBN-SiCw Nanocomposite with Superior Hardness, Strength, and Toughness.Nanomaterials (Basel). 2022 Dec 22;13(1):37. doi: 10.3390/nano13010037. Nanomaterials (Basel). 2022. PMID: 36615947 Free PMC article.
-
The Influence of the Binder Phase on the Properties of High-Pressure Sintered Diamond Polycrystals or Composites for Cutting Tool Applications.Materials (Basel). 2025 Jan 30;18(3):634. doi: 10.3390/ma18030634. Materials (Basel). 2025. PMID: 39942300 Free PMC article. Review.
-
Mechanical Properties and Deformation Behavior of Superhard Lightweight Nanocrystalline Ceramics.Nanomaterials (Basel). 2022 Sep 16;12(18):3228. doi: 10.3390/nano12183228. Nanomaterials (Basel). 2022. PMID: 36145016 Free PMC article. Review.
References
-
- F. P. Bundy, H. T. Hall, H. M. Strong, R. H. Wentorfjun, Nature 1955, 176, 51.
-
- R. H. Wentorf, J. Chem. Phys. 1957, 26, 956.
-
- V. L. Solozhenko, E. Gregoryanz, Mater. Today 2005, 8, 44.
-
- D. He, Y. Zhao, L. Daemen, J. Qian, T. D. Shen, T. W. Zerda, Appl. Phys. Lett. 2002, 81, 643.
-
- Z. Zhao, B. Xu, Y. Tian, Annu. Rev. Mater. Sci. 2016, 46, 383.
Grants and funding
- 91963115/Fostering Program of Major Research Plan of the National Natural Science Foundation of China
- 52090020/National Natural Science Foundation of China
- 51732010/National Natural Science Foundation of China
- 51772260/National Natural Science Foundation of China
- 2018YFA0703400/National Key R&D Program of China
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous