Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Jun;27(6):1639-1651.
doi: 10.1016/j.drudis.2022.04.006. Epub 2022 Apr 7.

Machine learning to design antimicrobial combination therapies: Promises and pitfalls

Affiliations
Review

Machine learning to design antimicrobial combination therapies: Promises and pitfalls

Jennifer M Cantrell et al. Drug Discov Today. 2022 Jun.

Abstract

Combination therapies can overcome antimicrobial resistance (AMR) and repurpose existing drugs. However, the large combinatorial space to explore presents a daunting challenge. In response, machine learning (ML) algorithms are being applied to identify novel synergistic drug interactions from millions of potential combinations. Here, we compare ML-based approaches for combination therapy design based on the type of input information used, specifically: drug properties, microbial response and infection microenvironment. We also provide a compilation of publicly available drug interaction datasets relevant to AMR. Finally, we discuss limitations of current ML-based methods and propose new strategies for designing efficacious combination therapies. These include consideration of in vivo conditions, design of sequential combinations, enhancement of model interpretability and application of deep learning algorithms.

Keywords: Antimicrobial resistance; Chemogenomics; Combination therapy; Drug discovery; Machine learning.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Publication types

MeSH terms

Substances

LinkOut - more resources