Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 May 30;380(2224):20210158.
doi: 10.1098/rsta.2021.0158. Epub 2022 Apr 11.

Opinion polarization in social networks

Affiliations

Opinion polarization in social networks

Nadia Loy et al. Philos Trans A Math Phys Eng Sci. .

Abstract

In this paper, we propose a Boltzmann-type kinetic description of opinion formation on social networks, which takes into account a general connectivity distribution of the individuals. We consider opinion exchange processes inspired by the Sznajd model and related simplifications but we do not assume that individuals interact on a regular lattice. Instead, we describe the structure of the social network statistically, assuming that the number of contacts of a given individual determines the probability that their opinion reaches and influences the opinion of another individual. From the kinetic description of the system, we study the evolution of the mean opinion, whence we find precise analytical conditions under which a polarization switch of the opinions, i.e. a change of sign between the initial and the asymptotic mean opinions, occurs. In particular, we show that a non-zero correlation between the initial opinions and the connectivity of the individuals is necessary to observe polarization switch. Finally, we validate our analytical results through Monte Carlo simulations of the stochastic opinion exchange processes on the social network. This article is part of the theme issue 'Kinetic exchange models of societies and economies'.

Keywords: Boltzmann-type equations; Monte Carlo simulations; Sznajd model; influencers; sociophysics; statistical network description.

PubMed Disclaimer