Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 1;136(5):jcs259257.
doi: 10.1242/jcs.259257. Epub 2022 May 17.

Transient accumulation and bidirectional movement of KIF13B in primary cilia

Affiliations

Transient accumulation and bidirectional movement of KIF13B in primary cilia

Alice Dupont Juhl et al. J Cell Sci. .

Abstract

Primary cilia are microtubule-based sensory organelles whose assembly and function rely on the conserved bidirectional intraflagellar transport (IFT) system, which is powered by anterograde kinesin-2 and retrograde cytoplasmic dynein-2 motors. Nematodes additionally employ a cell-type-specific kinesin-3 motor, KLP-6, which moves within cilia independently of IFT and regulates ciliary content and function. Here, we provide evidence that a KLP-6 homolog, KIF13B, undergoes bursts of bidirectional movement within primary cilia of cultured immortalized human retinal pigment epithelial (hTERT-RPE1) cells. Anterograde and retrograde intraciliary velocities of KIF13B were similar to those of IFT (as assayed using IFT172-eGFP), but intraciliary movement of KIF13B required its own motor domain and appeared to be cell-type specific. Our work provides the first demonstration of motor-driven, intraciliary movement by a vertebrate kinesin other than kinesin-2 motors.

Keywords: Cilia; Extracellular vesicles; Intraflagellar transport; KIF13B; Kinesin-3.

PubMed Disclaimer

Conflict of interest statement

Competing interests The authors declare no competing or financial interests.

Publication types

LinkOut - more resources