Contingency and selection in mitochondrial genome dynamics
- PMID: 35404229
- PMCID: PMC9054137
- DOI: 10.7554/eLife.76557
Contingency and selection in mitochondrial genome dynamics
Abstract
High frequencies of mutant mitochondrial DNA (mtDNA) in human cells lead to cellular defects that are associated with aging and disease. Yet much remains to be understood about the dynamics of the generation of mutant mtDNAs and their relative replicative fitness that informs their fate within cells and tissues. To address this, we utilize long-read single-molecule sequencing to track mutational trajectories of mtDNA in the model organism Saccharomyces cerevisiae. This model has numerous advantages over mammalian systems due to its much larger mtDNA and ease of artificially competing mutant and wild-type mtDNA copies in cells. We show a previously unseen pattern that constrains subsequent excision events in mtDNA fragmentation in yeast. We also provide evidence for the generation of rare and contentious non-periodic mtDNA structures that lead to persistent diversity within individual cells. Finally, we show that measurements of relative fitness of mtDNA fit a phenomenological model that highlights important biophysical parameters governing mtDNA fitness. Altogether, our study provides techniques and insights into the dynamics of large structural changes in genomes that we show are applicable to more complex organisms like humans.
Keywords: S. cerevisiae; computational biology; genetics; genome structure dynamics; genomics; long-read sequencing; multilevel selection; mutational trajectories; systems biology.
© 2022, Nunn and Goyal.
Conflict of interest statement
CN, SG No competing interests declared
Figures






















Similar articles
-
Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion.Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E947-56. doi: 10.1073/pnas.1501737112. Epub 2015 Feb 17. Proc Natl Acad Sci U S A. 2015. PMID: 25730886 Free PMC article.
-
Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level.EMBO J. 2024 Nov;43(22):5340-5359. doi: 10.1038/s44318-024-00183-5. Epub 2024 Aug 5. EMBO J. 2024. PMID: 39103491 Free PMC article.
-
Population structure of mitochondrial genomes in Saccharomyces cerevisiae.BMC Genomics. 2015 Jun 11;16(1):451. doi: 10.1186/s12864-015-1664-4. BMC Genomics. 2015. PMID: 26062918 Free PMC article.
-
Organization of DNA in Mammalian Mitochondria.Int J Mol Sci. 2019 Jun 5;20(11):2770. doi: 10.3390/ijms20112770. Int J Mol Sci. 2019. PMID: 31195723 Free PMC article. Review.
-
Mitochondrial inheritance in budding yeasts: towards an integrated understanding.Trends Microbiol. 2010 Nov;18(11):521-30. doi: 10.1016/j.tim.2010.08.001. Epub 2010 Sep 9. Trends Microbiol. 2010. PMID: 20832322 Review.
Cited by
-
Characterization and trans-generation dynamics of mitogene pool in the silver carp (Hypophthalmichthys molitrix).G3 (Bethesda). 2024 Sep 4;14(9):jkae101. doi: 10.1093/g3journal/jkae101. G3 (Bethesda). 2024. PMID: 38922124 Free PMC article.
-
Roles of Mitochondrial DNA Damage in Kidney Diseases: A New Biomarker.Int J Mol Sci. 2022 Dec 2;23(23):15166. doi: 10.3390/ijms232315166. Int J Mol Sci. 2022. PMID: 36499488 Free PMC article. Review.
-
Mitochondrial Genome Diversity across the Subphylum Saccharomycotina.bioRxiv [Preprint]. 2023 Jul 31:2023.07.28.551029. doi: 10.1101/2023.07.28.551029. bioRxiv. 2023. Update in: Front Microbiol. 2023 Nov 23;14:1268944. doi: 10.3389/fmicb.2023.1268944. PMID: 37577532 Free PMC article. Updated. Preprint.
-
Evolution and maintenance of mtDNA gene content across eukaryotes.Biochem J. 2024 Aug 7;481(15):1015-1042. doi: 10.1042/BCJ20230415. Biochem J. 2024. PMID: 39101615 Free PMC article. Review.
-
Mitochondrial genome diversity across the subphylum Saccharomycotina.Front Microbiol. 2023 Nov 23;14:1268944. doi: 10.3389/fmicb.2023.1268944. eCollection 2023. Front Microbiol. 2023. PMID: 38075892 Free PMC article.
References
-
- Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics. 2006;38:515–517. doi: 10.1038/ng1769. - DOI - PubMed
-
- Bernardi G, Prunell A, Kopecka H. In: Molecular Biology of Nucleocytoplasmic Relationships. Puiseux- Dao S, editor. Amsterdam, The Netherlands: Elsevier; 1975. An analysis of the mitochondrial genome of yeast with restriction enzymes; pp. 85–90.
-
- Bernardi G, Prunell A, Fonty G, Kopecka H, Strauss F. The mitochondrial genome of yeast: organization, evolution, and the petite mutation. Proceedings of the 10th International Bari Conference on the Genetic Function of Mitochondrial DNA. Elsevier North-Holland, Amsterdam, The Neth- erlands; 1976. pp. 185–198.
Publication types
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources
Molecular Biology Databases