Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2022 Mar 25;11(7):1121.
doi: 10.3390/cells11071121.

Platelets, Bacterial Adhesins and the Pneumococcus

Affiliations
Review

Platelets, Bacterial Adhesins and the Pneumococcus

Kristin Jahn et al. Cells. .

Abstract

Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin-receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.

Keywords: MSCRAMMs; Staphylococcus aureus; Streptococcus pneumoniae; platelet activation; platelet killing; pneumolysin; pore formation; surface proteins; toxin.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Scheme illustrating different platelet functions in the immune response. Platelets sense and bind invading bacteria and injured endothelium, resulting in platelet activation. Upon activation, platelets release chemokines and cytokines such as RANTES, triggering leukocyte recruitment and PMVs acting on gene expression of monocytes and monocyte (MC)-derived cells such as dendritic cells (DC). In addition, neutrophils are attracted, and NET formation occurs at the site of infection via platelet-dependent mechanisms. Created with BioRender.com (accessed on 21 March 2022).
Figure 2
Figure 2
Binding of S. pneumoniae (blue) to platelets (red). Scanning electron microscopy of single platelets (upper left), single pneumococci (bottom left), and platelets incubated with the pneumococcal TIGR4 strain for 1 h (right). The right image shows binding of pneumococci to platelets. In addition, pneumolysin pores are formed in platelet membranes (arrows), and released granule content is visible (circle).
Figure 3
Figure 3
Binding of bacteria to platelets occurs either directly or indirectly. Bacterial adhesins with specific repeating units can utilize ECM proteins such as fibronectin (Fn), fibrinogen (Fg), TSP-1, or vWF as molecular bridges to bind to, e.g., integrin αIIβ3 or other complexes of glycoproteins. Furthermore, some bacterial factors can directly bind to integrins, TLRs, or other platelet surface proteins. Bacteria already covered by IgGs are recognized by FcγRIIa. Created with BioRender.com (accessed on 21 March 2022).
Figure 4
Figure 4
Scheme of different interactions between platelets and pneumococci. Individual pneumococcal surface proteins can induce direct activation of platelets. On the other hand, the intracellular pneumolysin (Ply) kills platelets by extensive pore formation in platelet membranes, as shown by the SEM image of a Ply-treated platelet on the right side. Pneumolysin is released in the circulation upon autolysis of pneumococci, and its action on platelets can be neutralized by the addition of pharmaceutical IgG preparations. Created with BioRender.com (accessed on 21 March 2022).
Figure 5
Figure 5
Individual pneumococcal proteins and pneumococcal lysates directly activate human platelets. Washed platelets of a defined set of donors were incubated with different concentrations of pneumococcal proteins (A) (Table 1) for 30 min or pneumococcal lysates (B) with the indicated genetic backgrounds for 60 min at 37 °C. CD62P was used as an activation marker and was detected by flow cytometry, using a PE-Cy5-labelled P-selectin antibody. PBS was used as negative control, and 20 µM TRAP-6 was used as a positive control. The data are presented as geometric mean of fluorescence intensity (GMFI) of positive gated events multiplied with the percentage of positive gated events in the dot plots.

References

    1. Robier C. Platelet morphology. J. Lab. Med. 2020;44:231–239. doi: 10.1515/labmed-2020-0007. - DOI
    1. Lefrançais E., Looney M.R. Platelet Biogenesis in the Lung Circulation. Physiology. 2019;34:392–401. doi: 10.1152/physiol.00017.2019. - DOI - PMC - PubMed
    1. Machlus K.R., Italiano J.E., Jr. The incredible journey: From megakaryocyte development to platelet formation. J. Cell Biol. 2013;201:785–796. doi: 10.1083/jcb.201304054. - DOI - PMC - PubMed
    1. Macaulay I.C., Carr P., Gusnanto A., Ouwehand W.H., Fitzgerald D., Watkins N.A. Platelet genomics and proteomics in human health and disease. J. Clin. Investig. 2005;115:3370–3377. doi: 10.1172/JCI26885. - DOI - PMC - PubMed
    1. Wagner C.L., Mascelli M.A., Neblock D.S., Weisman H.F., Coller B.S., Jordan R.E. Analysis of GPIIb/IIIa Receptor Number by Quantification of 7E3 Binding to Human Platelets. Blood. 1996;88:907–914. doi: 10.1182/blood.V88.3.907.907. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources